首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求f(x,y,z)=x+y—z2+5在区域Ω:x2+y2+z2≤2上的最大值与最小值.
求f(x,y,z)=x+y—z2+5在区域Ω:x2+y2+z2≤2上的最大值与最小值.
admin
2020-01-15
23
问题
求f(x,y,z)=x+y—z
2
+5在区域Ω:x
2
+y
2
+z
2
≤2上的最大值与最小值.
选项
答案
f(x,y,z)在有界闭区域Ω上连续,一定存在最大、最小值. 第一步,先求f(x,y,z)在Ω内的驻点. 由[*]=1 =>f(x,y,z)在Ω内无驻点,因此f(x,y,z)在Ω的最大、最小值都只能在Ω的边界上达到. 第二步,求f(x,y,z)在Ω的边界x
2
+y
2
+z
2
=2上的最大、最小值,即求f(x,y,z)在条件x
2
+y
2
+z
2
一2=0下的最大、最小值,令F(x,y,z,λ)=x+y—z
2
+5+λ(x
2
+y
2
+z
2
一2),解方程组 [*] 由①,②=>x=y,由③=>z=0或λ=1.由x=y,z=0代入④=>x=y=±1,z=0.当λ=1时由①,②,得x=y=[*] 代入④得[*].因此得驻点P
1
(-1,-1,0),P
2
(1,1,0), [*] 计算得知f(P
1
)=3,f(P
2
)=7,f(P
3
)=f(P
4
)=[*]. 因此,f(x,y,z)在Ω的最大值为7,最小值为[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/hPS4777K
0
考研数学一
相关试题推荐
设α1,α2,α3都是矩阵A的特征向量,特征值两两不同,记γ=α1+α2+α3·设α1,α2,α3的特征值依次为1,一1,2,记矩阵B=(γ,Aγ,A2γ),β=A3γ,求解线性方程组BX=β.
已知曲线在直角坐标系中由参数方程给出:x=t+e-t,y=2t+e-2t(t≥0).证明该参数方程确定连续函数y=y(x),x∈[1,+∞).
设α1,α2,…,αs都是实的n维列向量,规定n阶矩阵A=α1α1T+α2α2T+…+αsαsT.设r(α1,α2,…,αs)=k,求二次型XTAX的规范形.
设f(x,y)在全平面有连续偏导数,曲线积分∫L(x,y)dx+xcosydy在全平面与路径无关,且∫(0,0)(t,t2)dx+xcosydy=t2,求f(x,y).
设随机变量X的概率密度为f1(x)=又随机变量Y在区间(0,X)上服从均匀分布,试求:X,Y的协方差cov(X,Y).
(I)已知由参数方程确定了可导函数y=f(x),求证:x=0是y=f(x)的极大值点.(Ⅱ)设F(x,y)在(x0,y0)某邻域有连续的二阶偏导数,且F(x0,y0)=F′x(x0,y0)=0,F′y(x0,y0)>0,F″xx(x0,y0)<0.
设总体X服从正态分布N(μ,1),X1,X2,…,X9是取自总体X的简单随机样本,要在显著性水平α=0.05下检验H0:μ=μ0=0,H1:μ≠0,如果选取拒绝域求c的值;
下列反常积分中收敛的是
设A,B为三阶矩阵,且特征值均为一2,1,1,以下命题:(1)A~B;(2)A,B合同;(3)A,B等价;(4)|A|=|B|中正确的命题个数为().
设Ω={(x,y,z)|x2+y2+z2≤1},则z2dxdydz=______。
随机试题
膀胱造瘘管的拔管注意事项。
以下说法正确的是
循行于上肢内侧后缘的经脉为
某证券公司正在筹建中,计划主要经营证券经纪、证券承销与保荐业务,依据《中华人民共和国证券法》的规定,其最低注册资本应该为( )元。
某缝纫店对外提供服装加工业务,其纳税义务发生时间为( )。
平静:讲述
20世纪末,维新派与守旧派展开了一场激烈的论战。其论战的内容包括
对于长度为n的线性表,在最坏的情况下,下列各排序法所对应的比较次数中三确的是
TheFalklandIslandsarecalled______byArgentina.
A、Happinessmeansgoodluckinmanylanguages.B、Happinessasakindoffeelingissomethinglikehavingagoodlife.C、People’s
最新回复
(
0
)