首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设F(u,v)具有连续的一阶偏导数,且F'u与F'v不同时为零. (Ⅰ)求曲面上任意一点(x0,y0,z0)(z0≠c)处的切平面方程; (Ⅱ)证明不论(Ⅰ)中的点(x0,y0,z0)如何,只要z0≠c,这些平面都经过同一个定点,并求出此定点.
设F(u,v)具有连续的一阶偏导数,且F'u与F'v不同时为零. (Ⅰ)求曲面上任意一点(x0,y0,z0)(z0≠c)处的切平面方程; (Ⅱ)证明不论(Ⅰ)中的点(x0,y0,z0)如何,只要z0≠c,这些平面都经过同一个定点,并求出此定点.
admin
2019-01-24
50
问题
设F(u,v)具有连续的一阶偏导数,且F'
u
与F'
v
不同时为零.
(Ⅰ)求曲面
上任意一点(x
0
,y
0
,z
0
)(z
0
≠c)处的切平面方程;
(Ⅱ)证明不论(Ⅰ)中的点(x
0
,y
0
,z
0
)如何,只要z
0
≠c,这些平面都经过同一个定点,并求出此定点.
选项
答案
(Ⅰ)[*] 将x=x
0
,y=y
0
,z=z
0
代入,由于F'
u
与F'
v
不同时为零,所以得到非零的法向量,从而得到点(x
0
,y
0
,z
0
)处的切平面方程为 [*] 其中下标0表示F'
u
,F'
v
中的x,y,z分别均用x
0
,y
0
,z
0
。代替.解毕. (Ⅱ)下面证明此切平面方程,无论点(x
0
,y
0
,z
0
)如何,只要z
0
≠c,该方程表示的平面总经过点(a,b,c).即用x=a,y=b,z=C代入①式,①式成为0=0.验证如下: [*] 证毕.
解析
转载请注明原文地址:https://kaotiyun.com/show/RvM4777K
0
考研数学一
相关试题推荐
直线L1:x一1=,L2:x+l=y一1=z,(I)若L1⊥L2,求λ;(Ⅱ)若L1与L2相交,求λ.
有一大批产品,其验收方案如下,先做第一次检验,从中任取10件,经检验无次品则接收这批产品,次品数大于2,则拒收;否则做第二次检验.其做法是从中再任取5件,仅当5件无次品时接收这批产品,若产品的次品率为10%,求:这批产品需进行第二次检验且能被接收的概率
设f(x)为连续函数,证明:∫02πf(|six|)dx=4∫0f(sinx)dx.
设0<a<1,证明:方程arctanx=ax在(0,+∞)内有且仅有一个实根.
袋中有12只球,其中红球4个,白球8个,从中一次抽取两个球,求下列事件发生的概率:两个球中一个是红球一个是白球;
设随机变量X1,X2,…,Xm+n(m<n)独立同分布,其方差为σ2,令Y=Xi,Z=Xm+k.求:D(Y),D(Z);
设X~U(0,2),Y=X2,求Y的概率密度函数.
计算定积分∫01.
计算,其中∑为下半球面的上侧,a为大于零的常数.
设f’(x0)=0,f’’(x0)<0,则必定存在一个正数δ,使得
随机试题
A、Mountaineeringismoredangerousthanotherformsofsports.B、Mountaineeringdoesn’tcallforteamefforts.C、Mountaineering
胃蛋白酶分解蛋白质的最好环境是
下列哪些情形属于想象竞合犯?()
恒定混合策略是指保持资产组合中各类资产的固定比例。()
根据《证券发行上市保荐业务管理办法》,发行人出现以下()情况之一的,中国证监会自确认之日起暂停保荐机构的保荐机构资格3个月,撤销相关人员的保荐代表人资格。Ⅰ.证券发行募集文件等申请文件存在虚假记载、误导性陈述或者重大遗漏Ⅱ.公开发行证券上市当年
以下是思想品德课教材案例:张先生和妻子、儿子一家三口住着一套三室两厅的房子,而张的父母却住在一间旧平房里。张父退休金较少,张母无收入,二人生活困难。当父母要求儿子张先生给予一定生活补助时,张先生以其父母没有照料过他的孩子为由,拒付赡养费。老人无奈,便向法
主张利用替代性学习进行德育的是()。
社会性的焦虑特属于某些社会或时代,它是一种________的心神不安和精神不定,是一种弥漫于社会不同阶层的焦虑。它不会轻易消退,不容易通过心理的调适而化解,人们所焦虑的对象或有不同,但在其性质和内容上又存在着一些共性。就如贫困者或忧虑自己生存缺乏保障,而富
允许媒体发言,是一种文明,_______允许媒体存在一定的出于真实的谬误,也是保证媒体有效发言的文明,_______这种文明,_______祛除任何对于真实的畏惧。填入画横线部分最恰当的一项是()。
MoreattentionwaspaidtothequalityofproductioninFranceatthetimeofReneCoty.CharlesDeschanelwasthenthefinancia
最新回复
(
0
)