首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(χ)在[0,1]上连续,在(0,1)内可导,且满足 f(1)=kχ1-χf(χ)dχ (k>1), 证明至少存在一点ξ∈(0,1),使得f′(ξ)=(1-ξ-1)f(ξ).
设函数f(χ)在[0,1]上连续,在(0,1)内可导,且满足 f(1)=kχ1-χf(χ)dχ (k>1), 证明至少存在一点ξ∈(0,1),使得f′(ξ)=(1-ξ-1)f(ξ).
admin
2018-06-12
50
问题
设函数f(χ)在[0,1]上连续,在(0,1)内可导,且满足
f(1)=k
χ
1-χ
f(χ)dχ (k>1),
证明至少存在一点ξ∈(0,1),使得f′(ξ)=(1-ξ
-1
)f(ξ).
选项
答案
令φ(χ)=χe
1-χ
f(χ),于是,φ(χ)在[0,1]上可导,且 φ′(χ)=e
1-χ
[f(χ)-χf(χ)+χf′(χ)]=χe
1-χ
[f′(χ)-(1-χ
-1
)f(χ)],[*]χ∈(0,1). 又由题设和积分中值定理知,存在η∈[0,[*]],使得 φ(1)=f(1)=k[*]φ(χ)dχ=φ(η), 从而函数φ(χ)在[η,1]上满足罗尔定理的全部条件,所以[*]ξ∈(η,1)[*](0,1),使得 φ′(ξ)=ξe
1-ξ
[f′(ξ)-(1-ξ
-1
)f(ξ)]=0,即f′(ξ)=(1-ξ
-1
)f(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/hTg4777K
0
考研数学一
相关试题推荐
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别为α,β的转置.证明:r(A)≤2.
已知n元齐次线性方程组A1χ=0的解全是A2χ=0的解,证明A2的行向量可以由A1的行向量线性表示.
设1≤a<b,函数f(χ)=χln2χ,求证f(χ)满足不等式(Ⅰ)0<f〞(χ)<2(χ>1).(Ⅱ)f(a)+f(b)-2f(b-a)2.
已知曲线在直角坐标系中由参数方程给出:χ=t+e-t,y=2t+e-2t(t≥0).(Ⅰ)证明该参数方程确定连续函数y=y(χ),χ∈[1,+∞).(Ⅱ)证明y=y(χ)在[1,+∞)单调上升且是凸的.(Ⅲ)求y=
设F(χ,y)在点(χ0,y0)某邻域有连续的偏导数,F(χ0,y0)=0,则F′y(χ0,y0)≠0是F(χ,y)=0在点(χ0,y0)某邻域能确定一个连续函数y=y(χ),它满足y0=y(χ0),并有连续的导数的_______条件.
已知函数y(χ)可微(χ>0)且满足方程y(χ)-1=∫1χdt(χ>0)则y(χ)=_______.
设函数f(x)在区间[a,+∞)内连续,且当x>a时,f’(x)>l>0,其中l为常数.若f(a)<0,则在区间内方程f(x)=0的实根个数为()
设向量组(Ⅰ)与向量组(Ⅱ),若(Ⅰ)可由(Ⅱ)线性表示,且r(Ⅰ)=r(Ⅱ)=r.证明:(Ⅰ)与(Ⅲ)等价.
设a<b,证明:不等式
证明不等式1+xln(x+
随机试题
甲房地产开发公司(以下简称“甲公司”)于2013年10月10日通过拍卖方式拍得位于北京城区的一块建设用地,2013年10月15日,甲公司与北京市土地管理部门签订《建设用地使用权出让合同》,2013年10月21日,甲公司缴纳了全部土地出让金,2013年11月
Givenmoreattention,thework______.
肾性高血压的发病机制是
下列哪项不是人工牙折断、脱落的原因
A.标签和说明书符合规定,用语科学易懂的药品B.临床治疗必需,使用方便,符合质量要求的药品C.临床治疗必需,使用广泛,疗效好同类药品中价格低的药品D.可供临床治疗选择使用,疗效好,同类药品中价格略高的药品确定《基本医疗保险药品目录》中“乙类目录”
根据《建设工程施工合同(示范文本)》,如果干扰事件对建设工程的影响持续时间长,承包人应按监理工程师要求的合理间隔提交()。[2011年真题]
有一项标的资产为1股A股票的欧式看涨期权,执行价格为50元,半年后到期,目前期权价格为2元,若到期日A股票市价为51元。则卖出1份该看涨期权的净损益为()。
中共中央立足党情国情军情,向军委机关部门和战区分别派驻纪检组,全部实行派驻审计,巡视和审计监督实现常态化、全覆盖。调整军事司法体制,按区域设置军事法院、军事检察院,保证依法独立公正行使职权。抓住____________这个关键,高悬纪检、巡视、审计“三把利
我国社会主义法的主要来源是()。
[*]
最新回复
(
0
)