首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(χ)在[0,1]上连续,在(0,1)内可导,且满足 f(1)=kχ1-χf(χ)dχ (k>1), 证明至少存在一点ξ∈(0,1),使得f′(ξ)=(1-ξ-1)f(ξ).
设函数f(χ)在[0,1]上连续,在(0,1)内可导,且满足 f(1)=kχ1-χf(χ)dχ (k>1), 证明至少存在一点ξ∈(0,1),使得f′(ξ)=(1-ξ-1)f(ξ).
admin
2018-06-12
74
问题
设函数f(χ)在[0,1]上连续,在(0,1)内可导,且满足
f(1)=k
χ
1-χ
f(χ)dχ (k>1),
证明至少存在一点ξ∈(0,1),使得f′(ξ)=(1-ξ
-1
)f(ξ).
选项
答案
令φ(χ)=χe
1-χ
f(χ),于是,φ(χ)在[0,1]上可导,且 φ′(χ)=e
1-χ
[f(χ)-χf(χ)+χf′(χ)]=χe
1-χ
[f′(χ)-(1-χ
-1
)f(χ)],[*]χ∈(0,1). 又由题设和积分中值定理知,存在η∈[0,[*]],使得 φ(1)=f(1)=k[*]φ(χ)dχ=φ(η), 从而函数φ(χ)在[η,1]上满足罗尔定理的全部条件,所以[*]ξ∈(η,1)[*](0,1),使得 φ′(ξ)=ξe
1-ξ
[f′(ξ)-(1-ξ
-1
)f(ξ)]=0,即f′(ξ)=(1-ξ
-1
)f(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/hTg4777K
0
考研数学一
相关试题推荐
求线性方程组的通解,并求满足条件χ12=χ22的所有解.
设A为n阶矩阵(n≥2),A*为A的伴随矩阵,证明
已知A=,矩阵X满足A*X=A-1+2X,其中A*是A的伴随矩阵,则X=_______.
(Ⅰ)已知由参数方程确定了可导函数y=f(χ),求证:χ=0是y=f(χ)的极大值点.(Ⅱ)设F(χ,y)在(χ0,y0)某邻域有连续的二阶偏导数,且F(χ0,y0)=F′χ(χ0,y0)=0,F′y(χ0,y0)>0,F〞χχ(χ0,y0)<0
设函数f(χ)连续,除个别点外二阶可导,其导函数y=f′(χ)的图像如图(1),令函数y=f(χ)的驻点的个数为P,极值点的个数为q,曲线y=f(χ)拐点的个数为r,则
设z=z(χ,y)是由9χ2-54χy+90y2-6yz-z2+18=0确定的函数,(Ⅰ)求z=z(χ,y)一阶偏导数与驻点;(Ⅱ)求z=z(χ,y)的极值点和极值.
已知函数y(χ)可微(χ>0)且满足方程y(χ)-1=∫1χdt(χ>0)则y(χ)=_______.
设事件A出现的概率为p=0.5,试利用切比雪夫不等式,估计在1000次独立重复试验中事件A出现的次数在450到550次之间的概率a.
当x→0+时,下列无穷小中,阶数最高的是().
设f(x)=∫0tanxarctant2dt,g(x)=x—sinx,当x→0时,比较这两个无穷小的关系。
随机试题
急性阑尾炎腹痛起始于脐周或上腹的机制是
悬饮饮停胸胁者首选方剂是
地面沉降的长期观测中,要设置的标中包括()。
钢结构涂装工程中,防腐涂料的80种、涂装遍数、涂层厚度应符合设计要求,当设计对涂层厚度无要求时,涂层干漆膜正确的有()。
下列关于无形资产处置的说法中,正确的有( )。
中国公民王某是境内甲公司的员工,2015年1月被派遣到境内某外商投资企业担任高级管理人员,甲公司每月支付王某工资5000元,外商投资企业每月支付王某工资9000元,甲公司和外商投资企业分别按规定代扣代缴了王某的个人所得税,则王某每月应补缴或应退个人所得税(
下列关于全国性商业银行和区域性商业银行的叙述中,有误的一项是()。
VisualBasic组合框可表现为简单组合框、下拉式组合框、下拉式列表框三种类型,决定组合框表现为哪种类型的属性是
Argumentsmayconcernsuchunimportantmattersasstylesofdressorhairdos.(Passage1)
ApaperpublishedbytworesearchersattheUniversityofLondonclaimstoprovethatmusicaffectsourresponsestovisualimag
最新回复
(
0
)