首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是2×4矩阵,齐次线性方程组Ax=0的基础解系是ζ1=(1,3,0,2)T,ζ2=(1,2,一1,3)T.又齐次线性方程组Bx=0的基础解系是η1=(1,1,2,1)T,η2=(0,一3,1,a)T. 如果Ax一0与Bx=0有非零公共解,求a的值并求
设A是2×4矩阵,齐次线性方程组Ax=0的基础解系是ζ1=(1,3,0,2)T,ζ2=(1,2,一1,3)T.又齐次线性方程组Bx=0的基础解系是η1=(1,1,2,1)T,η2=(0,一3,1,a)T. 如果Ax一0与Bx=0有非零公共解,求a的值并求
admin
2020-10-21
96
问题
设A是2×4矩阵,齐次线性方程组Ax=0的基础解系是ζ
1
=(1,3,0,2)
T
,ζ
2
=(1,2,一1,3)
T
.又齐次线性方程组Bx=0的基础解系是η
1
=(1,1,2,1)
T
,η
2
=(0,一3,1,a)
T
.
如果Ax一0与Bx=0有非零公共解,求a的值并求出所有非零公共解.
选项
答案
Ax=0与Bx=0有非零公共解,则 [*] 当a=0时,R(A
1
)=3<4,x=0有非零解,即Ax=0与Bx=0有非零公共解. 进一步,A
1
→[*] 得A
1
x=0的非零解为[*] 故Ax=0与Bx=0的非零公共解为X=一2k[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/hU84777K
0
考研数学二
相关试题推荐
设A是三阶矩阵,A*是A的伴随矩阵,已知A的每行元素之和为k,A*的每行元素之间和为m,则|A|=()
当a,b为何值时,β不可由a1,a2,a3线性表示。
曲线在t=0对应点处的法线方程是___.
设曲线L:,则曲线L的t=π/4对应点处的曲率为___。
设曲线y=y(x)(x>0)是微分方程2y"+y’-y=(4-6x)e-x的一个特解,此曲线经过原点且在原点处的切线平行于x轴。计算积分23.
[2000年]已知f(x)是周期为5的连续函数,它在x=0的邻域内满足关系式f(1+sinx)一3f(1一sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小量,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方
(13年)设曲线L的方程为(1≤x≤e)(I)求L的弧长;(Ⅱ)设D是由曲线L,直线x=1,x=e及x轴所围平面图形.求D的形心的横坐标.
设实二次型f(x1,x2,x3)=(x1一x2+x3)2+(x2+x3)2+(x1+ax3)2,其中a是参数•(I)求f(x1,x2,x3)=0的解;(Ⅱ)求f(x1,x2,x3)的规范形.
设(Ⅰ)求f’(x);(Ⅱ)证明:x=0是f(x)的极大值点;(Ⅲ)令xn=,考察f’(xn)是正的还是负的,n为非零整数;(Ⅳ)证明:对,f(x)在(-δ,0]上不单调上升,在[0,δ]上不单调下降.
已知二次型f(χ1,χ2,χ3)=(1-a)χ12+(1-a)χ22+2χ32+2(1+a)χ1χ2的秩为2.(1)求a.(2)求作正交变换X=QY,把f(χ1,χ2,χ3)化为标准形.(3)求方程f(χ1,χ2,χ3)=0的
随机试题
患者,女性,69岁。慢性咳嗽伴喘45年,平素生活规律,注意耐寒锻炼,晨起坚持散步。2天前因受凉咳嗽、咳白痰、流涕,伴咽痛。4小时前突然出现左胸疼痛,伴进行性气短加重。最佳处理原则是
A.无对称性的四肢大关节游走痛B.有对称性的多关节慢性炎症C.近端指间关节,腕、足、膝、踝等关节炎症常对称分布D.有对称性、无游走性的关节痛E.膝、髋、踝关节,多为不对称
A.抑制细菌蛋白质合成B.抑制细菌细胞壁合成C.影响细菌细胞膜通透性D.干扰细菌叶酸代谢E.抑制细菌DNA螺旋酶氨基糖苷类药物的抗菌机制是
收益性物业的经营费用不包括()。
根据海关有关管理规定,目前可以向海关办理报关注册登记手续的企业有()。
人类基因组测序完成后,生物学家便一直在绘制碱基上的小差异,即单核苷酸多态性,这些小差异成为2007年10余个研究项目的关键内容。在这些被称为广泛关联基因组研究中,研究人员对数千名患病或无病个体的DNA进行了对比,以确定哪些小的基因差异会给人类带来疾病风险。
AnewstudypublishedinthejournalProceedingsoftheRoyalSocietyBbytheteamsofDr.GregoryWestandDr.VeroniqueBohbo
给你的好友张龙发送一封主题为“购书清单”的邮件,邮件内容为:“附件中为购书清单,请查收。”,同时把附件:“购书清单.docx”一起发送给对方,张龙的邮箱地址为zhanglong@126.com。
WhichofthefollowingstatementsaboutthetelephoneofthefutureisNOTtrue?
【B1】【B17】
最新回复
(
0
)