首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知y*(x)=xe—x+e—2x,y*(x)=xe—x+xe—2x,y*(x)=xe—x+e—2x+xe—2x是某二阶线性常系数微分方程y"+py’+qy=f(x)的三个特解. (Ⅰ)求这个方程和它的通解; (Ⅱ)设y=y(x)是该方程满足y(0)=0,
已知y*(x)=xe—x+e—2x,y*(x)=xe—x+xe—2x,y*(x)=xe—x+e—2x+xe—2x是某二阶线性常系数微分方程y"+py’+qy=f(x)的三个特解. (Ⅰ)求这个方程和它的通解; (Ⅱ)设y=y(x)是该方程满足y(0)=0,
admin
2019-06-06
71
问题
已知y
*
(x)=xe
—x
+e
—2x
,y
*
(x)=xe
—x
+xe
—2x
,y
*
(x)=xe
—x
+e
—2x
+xe
—2x
是某二阶线性常系数微分方程y"+py’+qy=f(x)的三个特解.
(Ⅰ)求这个方程和它的通解;
(Ⅱ)设y=y(x)是该方程满足y(0)=0,y’(0)=0的特解,求∫
0
+∞
y(x)dx.
选项
答案
(Ⅰ)由线性方程解的叠加原理→ y
1
(x)=y
3
*
(x)一y
2
*
(x)=e
—2x
,y
2
(x)=y
3
*
(x)一y
1
*
(x)=xe
—2x
均是相应的齐次方程的解,它们是线性无关的.于是该齐次方程的特征根是重根A=一2相应的特征方程为 (A+2)
2
=0,即λ
2
+4λ+4=0. 原方程为 y"+4y’+4y=f(x). ① 由于y’(x)=xe
—x
是它的特解,求导得 y
*
’(x)=e
—x
(1一x),y
*
’(x)=e
—x
(x一2). 代入方程①得e
—x
(x一2)+4e
—x
(1一x)+4xe
—x
=f(x) → f(x)=(x+2)e
—x
→原方程为y"+4y’+4y=(x+2)e
—x
,其通解为 y=C
1
e
—2x
+C
2
xe
—2x
+xe
—x
,其中C
1
,C
2
为[*]常数. [*] 不必由初值来定C
1
,C
2
,直接将方程两边积分得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/xlV4777K
0
考研数学二
相关试题推荐
求极限:(a,b,c为正的常数).
设线性方程组求线性方程组(Ⅰ)的通解;
求微分方程y"+5y’+6y=2e一x的通解.
设f(χ)在[0,1]上二阶可导,且|f〞(χ)|≤1(χ∈[0,1]),又f(0)=f(1),证明:|f′(χ)|≤(χ∈[0,1]).
直线y=x将椭圆x2+3y2=6y分为两块,设小块面积为A,大块面积为B,求的值.
设f(x)是周期为2的周期函数,且在一个周期内的表达式为将f(x)展开成傅里叶级数,并求级数
证明可微的必要条件:设z=f(x,y)在点(x0,y0)处可微,则fx’(x0,y0)与fy’(x0,y0)都存在,且dz|(x0,y0)=fy’(x0,y0)△x+fy’(x0,y0)△y。
设可微函数f(x,y)在点(x0,y0)取得极小值,则下列结论正确的是()
设f(x)=。求f(x)的值域。
微分方程(1一xx)y—xy’=0满足初值条件y(1)=1的特解是____________.
随机试题
发电厂和变电所中,断路器控制回路电压采用直流110V,断路器跳闸线圈额定电流为3A,在额定电压工况下,以下描述错误的是哪项?
热水锅炉零件(非通用零件)
下列人员中,肯定不具备担任期货交易所负责人资格的有( )。
证券公司通过客户信用交易担保证券账户持有的股票应计人其自有股票,但该账户内股票数量变动,证券公司需履行相应的信息报告、披露或者要约收购义务。( )
苛勒的完形一顿悟说与桑代克的试误说的区别是()。
将等体积的苯、汽油和水在试管中充分混合后静置。下列图示现象正确的是()。
发出确保到2020年实现全面建成小康社会宏伟目标的动员令的是()。
面向对象的程序设计语言是一种()。
Comparisonsweredrawnbetweenthedevelopmentoftelevisioninthe20thcenturyandthediffusionofprintinginthe15thand1
Forthispart,youareallowed30minutestowriteashortessaybasedonthepicturebelow.Youshouldstartyouressaywitha
最新回复
(
0
)