首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知y*(x)=xe—x+e—2x,y*(x)=xe—x+xe—2x,y*(x)=xe—x+e—2x+xe—2x是某二阶线性常系数微分方程y"+py’+qy=f(x)的三个特解. (Ⅰ)求这个方程和它的通解; (Ⅱ)设y=y(x)是该方程满足y(0)=0,
已知y*(x)=xe—x+e—2x,y*(x)=xe—x+xe—2x,y*(x)=xe—x+e—2x+xe—2x是某二阶线性常系数微分方程y"+py’+qy=f(x)的三个特解. (Ⅰ)求这个方程和它的通解; (Ⅱ)设y=y(x)是该方程满足y(0)=0,
admin
2019-06-06
53
问题
已知y
*
(x)=xe
—x
+e
—2x
,y
*
(x)=xe
—x
+xe
—2x
,y
*
(x)=xe
—x
+e
—2x
+xe
—2x
是某二阶线性常系数微分方程y"+py’+qy=f(x)的三个特解.
(Ⅰ)求这个方程和它的通解;
(Ⅱ)设y=y(x)是该方程满足y(0)=0,y’(0)=0的特解,求∫
0
+∞
y(x)dx.
选项
答案
(Ⅰ)由线性方程解的叠加原理→ y
1
(x)=y
3
*
(x)一y
2
*
(x)=e
—2x
,y
2
(x)=y
3
*
(x)一y
1
*
(x)=xe
—2x
均是相应的齐次方程的解,它们是线性无关的.于是该齐次方程的特征根是重根A=一2相应的特征方程为 (A+2)
2
=0,即λ
2
+4λ+4=0. 原方程为 y"+4y’+4y=f(x). ① 由于y’(x)=xe
—x
是它的特解,求导得 y
*
’(x)=e
—x
(1一x),y
*
’(x)=e
—x
(x一2). 代入方程①得e
—x
(x一2)+4e
—x
(1一x)+4xe
—x
=f(x) → f(x)=(x+2)e
—x
→原方程为y"+4y’+4y=(x+2)e
—x
,其通解为 y=C
1
e
—2x
+C
2
xe
—2x
+xe
—x
,其中C
1
,C
2
为[*]常数. [*] 不必由初值来定C
1
,C
2
,直接将方程两边积分得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/xlV4777K
0
考研数学二
相关试题推荐
[*]
求极限:(a,b,c为正的常数).
设f(χ)在(a,b)上有定义,c∈(a,b),又f(χ)在(a,b)\{c}连续,c为f(χ)的第一类间断点.问f(χ)在(a,b)是否存在原函数?为什么?
设f(x)在[0,1]上连续,且f(x)<1,证明:在(0,1)有且仅有一个根.
设f(χ)在[0.1]二阶可导,且f(0)=f(1)=0,试证:ξ∈(0,1)使得f〞(ξ)=f′(ξ).
设函数f(χ,y,z)一阶连续可偏导且满足f(tχ,ty,tz)=tkf(χ,y,z).证明:=kf(χ,y,z).
在曲线y=x2(0≤x≤1)上取一点(t,t2)(0<t<1),设A1是由曲线y=x2(0≤x≤1),直线y=t2和x=0所围成图形的面积;A2是由曲线y=x2(0≤x≤1),直线y=t2和x=1所围成图形的面积,则t取________时,A=A1+A2取
设exsin2x为某n阶常系数线性齐次微分方程的一个解,则该方程的阶数n至少是__________,该方程为__________.
随机试题
马克思一生最伟大的两个发现是()。①唯物史观②剩余价值学说③价格围绕价值上下波动的规律④资本主义周期性爆发经济危机
处方审查的内容包括
A.抗ds-DNA抗体B.抗RNP抗体C.抗CCP抗体D.抗SSA和SSB抗体E.抗Jo-1抗体多发性肌炎/皮肌炎的标志抗体
A血尿B蛋白尿C脓尿D乳糜尿E脂质尿慢性肾小球肾炎最具特征性的尿异常是
某公司系某市农工商联合公司的下属企业。该公司自成立以来,业绩一般,其后因经营管理不善严重亏损,对外负债远远超过公司资产,且公司已无力清偿,经上级公司同意,该企业向人民法院申请破产。人民法院在受理后经审查认定该公司符合法定破产条件,于是裁定该公司申请破产案进
各个施工过程的劳动量和作业量是指()。
分化是指出现与原有行业相关、相配套的行业。()
由于我国跨越了资本主义高度发展阶段,是从半殖民地半封建社会直接进入社会主义社会,因此邓小平指出:“现在我们虽说在搞社会主义,但事实上不够格。”这说明()。
若MyTemp是一个具有一个虚拟类型参数的类模板,且有如下语句序列:MyTempp2;MyTempp3[2];编译系统在处理上面的语句序列时,所生成的模板MyTemp的实例的个数是()。
A.QuickerrecoveryfromillnessB.AlongerlifeforoptimistsC.RelationshipbetweengoodhealthandoptimismD.Apositivew
最新回复
(
0
)