首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设某种电子器件的寿命(以小时计)T服从指数分布,概率密度为其中λ>0未知.现从这批器件中任取n只在时刻t=0时投入独立寿命试验,试验进行到预定时间T0结束,此时有k(0<k<n)只器件失效,试求λ的最大似然估计.
设某种电子器件的寿命(以小时计)T服从指数分布,概率密度为其中λ>0未知.现从这批器件中任取n只在时刻t=0时投入独立寿命试验,试验进行到预定时间T0结束,此时有k(0<k<n)只器件失效,试求λ的最大似然估计.
admin
2017-05-10
62
问题
设某种电子器件的寿命(以小时计)T服从指数分布,概率密度为
其中λ>0未知.现从这批器件中任取n只在时刻t=0时投入独立寿命试验,试验进行到预定时间T
0
结束,此时有k(0<k<n)只器件失效,试求λ的最大似然估计.
选项
答案
考虑事件A:“试验直至时间T
0
为止,有k只器件失效,而有n一k只未失效”的概率.记T的分布函数为F(t),即有 [*] 一只器件在t=0时投入试验,则在时间T
0
以前失效的概率为P{T≤T
0
}=F(T
0
)=1一e
-λT0
;而在时间T
0
未失效的概率为P{T>T
0
}=1—F(T
0
)=e
-λT0
.由于各只器件的试验结果是相互独立的,因此事件A的概率为 L(λ)=C
n
(1一e
-λT0
)
k
(e
-λT0
)
n-k
,这就是所求的似然函数.取对数得 lnL(λ)=lnC
n
k
+kln(1一e
-λT0
)+(n一k)(一λT
0
), [*] 于是A的最大似然估计为[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/hWH4777K
0
考研数学三
相关试题推荐
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明:矩阵Q可逆的充分必要条件是αTA-1α≠b.
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
已知,二次型f(x1,x2,x3)=xT(ATA)x的秋为2.求实数a的值;
若矩阵相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P,使P-1AP=A.
求微分方程y〞ˊ-yˊ=0的一条积分曲线,使此积分曲线在原点处有拐点,且以直线y=2x为切线.
某商品进价为a(元/件),根据以往经验,当销售价为b(元/件)时,销售量为c件,市场凋查表明,销售价每降10%,销售量增加40%,现决定一次性降价.试问,当销售定价为多少时,可获得最大利润?并求出最大利润.
已知β1、β2是非齐次线性方程组Ax=b的两个不同的解,α1、α2是对应齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解(一般解)必是().
在天平上重复称量一重为a的物品,假设各次称量结果相互独立且同服从正态分布N(a,0.22),若以次称量结果的算术平均值,则为使≥0.95,n的最小值应小于自然数__________.
两台同样自动记录仪,每台无故障工作的时间服从参数为5的指数分布;首先开动其中一台,当其发生故障时,停用而另一台自动开动.试求两台记录仪无故障工作的总时间T的概率密度f(t)、数学期望和方差.
设则B等于().
随机试题
A.40~60cmB.75~100cmC.150~180cmD.180~200cmE.200cm以上纵隔摄影的距离是
采集病史时应特别注意询问如果无感染史,既往有类似发作,并可自行缓解,检查重点应是
患者,女,50岁。患甲状腺功能减退症2年。家属主诉患者记忆力严重减退、反应迟钝,经常猜疑别人,家人都无法和其进行交流和相处。该患者目前存在的主要心理问题是
卷烟、粮食白酒、薯类白酒在生产销售和进口环节计算消费税时,实行复合计税方法计算消费税,但在委托加工环节代收代缴消费税时,实行单一从价计税方法。()
甲制药公司为增值税一般纳税人,注册资本金3000万元,生产职工年均1500人。2006年相关生产、经营资料如下:(1)公司坐落在某市区,全年实际占用土地面积共计140000平方米,其中:公司办的职工子弟学校占地10000平方米、幼儿园占地4
犯罪是违法的行为,但违法并不都是犯罪。()
中国特色社会主义理论体系、道路和制度的相互关系是()
如果级数
若某计算机采用8位整数补码表示数据,则运算______将产生溢出。A.127+1B.-127-1C.-127+1D.127-1
Thevisitorsdecidedtostayinourcityfor________twodaysastheywantedtohavealookaround.
最新回复
(
0
)