首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(一∞,+∞)上有界,且存在二阶导数.试证明:至少存在一点ξ∈(一∞,+∞)使f’’(ξ)=0.
设f(x)在(一∞,+∞)上有界,且存在二阶导数.试证明:至少存在一点ξ∈(一∞,+∞)使f’’(ξ)=0.
admin
2014-04-16
77
问题
设f(x)在(一∞,+∞)上有界,且存在二阶导数.试证明:至少存在一点ξ∈(一∞,+∞)使f
’’
(ξ)=0.
选项
答案
用反证法,设对一切xE(一∞,+∞),f
’’
(x)≠0,则要么对一切xE(一∞,+∞),f
’’
(x)>0,或者对一切x∈(一∞,+∞),f
’’
(x)<0.不妨设对一切x∈(一∞,+∞),f
’’
(x)>0.有以下两种解法:法一取x
1
使f
’
(x
1
)≠0.这种x
1
总存在的,因若不存在,则f
’
(x)≡0,从而与反证法的前提矛盾,取好x
1
之后,将f(x)在x=x
1
处按泰勒公式展开至n=1,有[*]若f
’
(x
1
)>0,令上式中的x→+∞;若f
’
(x
1
)<0,令上式中的x→一∞,总有[*],与f(x)在(一∞,+∞)上有界矛盾.此矛盾证明了反证法的前提有错,故知存在ξ∈(一∞,+∞)使f
’’
(ξ)=0.法二由对一切x∈(一∞,+∞),f
’’
(x)>0,故知对一切x,f
’
(x)严格单调增加.取x
1
使f
’
(x
1
)>0(若不然,取x
1
使f
’
(x
1
)<0),由拉格朗日中值定理,当x>x
1
时,有f(x)=f(z1)+f
’
(η)(x-x
1
)>f(x
1
)+f
’
(x
1
)(x-x
1
),令x→∞,得f(x)→∞,与f(x)有界矛盾.若f
’
(x
1
)<0,则当x<x
1
时,有f(x)=f(x
1
)+f
’
(η)(x-x
1
)>f(x
1
)+f
’
(x
1
)(x-x
1
),令x→一∞,得f(x)→+∞,与f(x)有界矛盾.此矛盾证明了反证法的前提有错,故知存在ξ∈(一∞,+∞),使f
’’
(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/hX34777K
0
考研数学二
相关试题推荐
(97年)设在区间[a,b]上f(χ)>0,f′(χ)<0,fχ(χ)>0,令S1=∫abf(χ)dχ,S2=f(b)(b-a),S3=[f(a)+f(b)](b-a)则
(10年)设A为4阶实对称矩阵,且A2+A=O.若A的秩为3,则A相似于【】
(16年)级数sin(n+k)(k为常数)【】
A、 B、 C、 D、 C
(1998年)设周期函数f(x)在(一∞,+∞)内可导,周期为4,又,则曲线y=f(x)在点(5,f(5))处的切线斜率为()
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值,又f(a)=g(a),b(b)=g(b),证明:(I)存在η∈(a,b),使得f(η)=g(η);(Ⅱ)存在ξ∈(a,b),使得f"(ξ)=g"(ξ)。
设f(x)连续,且f(1)=0,f’(1)=2,求极限。
随机试题
为了判断胎儿肾成熟度,应检测
A、呕吐食物B、呕而不吐C、呕吐酸苦水D、呕吐痰涎E、呕吐带血样物妊娠恶阻之肝胃不和证的辨证要点是
某市环保局应当地居民的举报对排放烟尘超过国家规定指标的某化工厂作出了罚款4万元的行政处罚,并责令其限期改正。化工厂对环保局的行政处罚决定不服,于2008年3月向法院提起行政诉讼。诉讼期间,原告找到被告要求协商解决,被告同意,遂变更了原行政处罚决定,对原告只
军事测绘单位的测绘资质审查由()负责。
投资者的最优证券组合是使他最满意的有效组合,它是无差异曲线簇与有效边界线构成的闭合区域。()
依据《中华人民共和国教育法》的相关规定,某地拟设立一所新学校。下列不属于该学校设立必备条件的是()。
对犯罪分子惩办就是一律严惩犯罪分子。起到“杀一儆百”的作用。()
轨道:卫星
Democracy Democracyisnotanewconcept.TheancientAthenianshadademocraticsystem.TheirdemocracywasthesameasAme
(think)______itover,hedecidedtogiveitup.
最新回复
(
0
)