首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(一∞,+∞)上有界,且存在二阶导数.试证明:至少存在一点ξ∈(一∞,+∞)使f’’(ξ)=0.
设f(x)在(一∞,+∞)上有界,且存在二阶导数.试证明:至少存在一点ξ∈(一∞,+∞)使f’’(ξ)=0.
admin
2014-04-16
94
问题
设f(x)在(一∞,+∞)上有界,且存在二阶导数.试证明:至少存在一点ξ∈(一∞,+∞)使f
’’
(ξ)=0.
选项
答案
用反证法,设对一切xE(一∞,+∞),f
’’
(x)≠0,则要么对一切xE(一∞,+∞),f
’’
(x)>0,或者对一切x∈(一∞,+∞),f
’’
(x)<0.不妨设对一切x∈(一∞,+∞),f
’’
(x)>0.有以下两种解法:法一取x
1
使f
’
(x
1
)≠0.这种x
1
总存在的,因若不存在,则f
’
(x)≡0,从而与反证法的前提矛盾,取好x
1
之后,将f(x)在x=x
1
处按泰勒公式展开至n=1,有[*]若f
’
(x
1
)>0,令上式中的x→+∞;若f
’
(x
1
)<0,令上式中的x→一∞,总有[*],与f(x)在(一∞,+∞)上有界矛盾.此矛盾证明了反证法的前提有错,故知存在ξ∈(一∞,+∞)使f
’’
(ξ)=0.法二由对一切x∈(一∞,+∞),f
’’
(x)>0,故知对一切x,f
’
(x)严格单调增加.取x
1
使f
’
(x
1
)>0(若不然,取x
1
使f
’
(x
1
)<0),由拉格朗日中值定理,当x>x
1
时,有f(x)=f(z1)+f
’
(η)(x-x
1
)>f(x
1
)+f
’
(x
1
)(x-x
1
),令x→∞,得f(x)→∞,与f(x)有界矛盾.若f
’
(x
1
)<0,则当x<x
1
时,有f(x)=f(x
1
)+f
’
(η)(x-x
1
)>f(x
1
)+f
’
(x
1
)(x-x
1
),令x→一∞,得f(x)→+∞,与f(x)有界矛盾.此矛盾证明了反证法的前提有错,故知存在ξ∈(一∞,+∞),使f
’’
(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/hX34777K
0
考研数学二
相关试题推荐
(16年)级数sin(n+k)(k为常数)【】
A、 B、 C、 D、 D
(2007年)设某商品的需求函数为Q=160一2p,其中Q,p分别表示需求量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是()
(91年)试证明n维列向量组α1,α2,…,αn线性无关的充分必要条件是行列式其中αiT表示列向量αi的转置,i=1,2,…,n.
设A=,B为三阶非零矩阵,为BX=0的解向量,且AX=α3有解,(Ⅰ)求常数a,b;(Ⅱ)求BX=0的通解。
设f(x)在[0,1]上二阶可导,|f’(x)|≤1(x∈[0,1]),f(0)=f(1),证明:对任意的x∈[0,1],有|f’(x)|≤1/2。
设f(x)∈c[a,6],在(a,b)内二阶可导(Ⅰ)若fA=0,fB<0,f’+A>0.证明:存在ζ∈(a,6),使得f(ζ)f"(ζ)+f’2(n)=0;(Ⅱ)若fA=fB=∫abf(x)dx=0,证明:存在η∈(a,b),使得f”
随机试题
莫泊桑,19世纪后半期法国优秀的批判现实主义作家,对后世影响极大,下列对他的描述中,正确的是()。
促销的本质是()
1999年7月,大发公司与和顺公司签订了一份合同。该合同约定和顺公司为大发公司加工特种空调机50台,每台加工费5000元,由大发公司提供原材料,交货时间为次年6月底,交货的同时交付加工费。和顺公司于次年6月中旬完成了该批空调机的加工,就通知大发公司取货付款
A公司是一家生产企业,2015年度的管理用报表部分数据如下:42A公司没有优先股,目前发行在外的普通股为500万股,2016年年初的每股价格为4元。该公司适用的所得税税率为25%,加权平均资本成本为10%,A公司正在进行企业价值评估,预计2016年和2
阅读材料,回答下列问题。材料一全国农村综合实力百强县(市)广东省高州市是著名的荔枝产地。前几年“丰产不丰收,百姓伤透了心”。近些年,市政府以加大农业科研力度为突破口,引导农民走“高产、优质、高效”的发展之路,建立了农业科技网络,使该市成了全国
秦亡汉立,统治者汲取前朝教训,与民休息,无为而治,出现了中国历史上第一个治世:
某贸易公司甲从国外购进200吨新闻纸,委托某船运公司乙运往中国境内。一日,乙船运公司的运货船载着该船船员私自在国外购买的手机、电视机等电器,在中国某市附近海域进行走私交易时,被中国某海关抓获。该海关做出决定,将包括甲公司200吨新闻纸在内的船上所有物品予以
向量组α1,α2,…,αs线性无关的充要条件是().
Whereisthewomanfrom?
ThehighestpeakinCanadais______,whichistheYukonTerritoryofnorthwestCanada.
最新回复
(
0
)