首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(一∞,+∞)上有界,且存在二阶导数.试证明:至少存在一点ξ∈(一∞,+∞)使f’’(ξ)=0.
设f(x)在(一∞,+∞)上有界,且存在二阶导数.试证明:至少存在一点ξ∈(一∞,+∞)使f’’(ξ)=0.
admin
2014-04-16
51
问题
设f(x)在(一∞,+∞)上有界,且存在二阶导数.试证明:至少存在一点ξ∈(一∞,+∞)使f
’’
(ξ)=0.
选项
答案
用反证法,设对一切xE(一∞,+∞),f
’’
(x)≠0,则要么对一切xE(一∞,+∞),f
’’
(x)>0,或者对一切x∈(一∞,+∞),f
’’
(x)<0.不妨设对一切x∈(一∞,+∞),f
’’
(x)>0.有以下两种解法:法一取x
1
使f
’
(x
1
)≠0.这种x
1
总存在的,因若不存在,则f
’
(x)≡0,从而与反证法的前提矛盾,取好x
1
之后,将f(x)在x=x
1
处按泰勒公式展开至n=1,有[*]若f
’
(x
1
)>0,令上式中的x→+∞;若f
’
(x
1
)<0,令上式中的x→一∞,总有[*],与f(x)在(一∞,+∞)上有界矛盾.此矛盾证明了反证法的前提有错,故知存在ξ∈(一∞,+∞)使f
’’
(ξ)=0.法二由对一切x∈(一∞,+∞),f
’’
(x)>0,故知对一切x,f
’
(x)严格单调增加.取x
1
使f
’
(x
1
)>0(若不然,取x
1
使f
’
(x
1
)<0),由拉格朗日中值定理,当x>x
1
时,有f(x)=f(z1)+f
’
(η)(x-x
1
)>f(x
1
)+f
’
(x
1
)(x-x
1
),令x→∞,得f(x)→∞,与f(x)有界矛盾.若f
’
(x
1
)<0,则当x<x
1
时,有f(x)=f(x
1
)+f
’
(η)(x-x
1
)>f(x
1
)+f
’
(x
1
)(x-x
1
),令x→一∞,得f(x)→+∞,与f(x)有界矛盾.此矛盾证明了反证法的前提有错,故知存在ξ∈(一∞,+∞),使f
’’
(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/hX34777K
0
考研数学二
相关试题推荐
(98年)设周期函数f(χ)在(-∞,+∞)内可导,周期为4,又=-1,则曲线y=f(χ)在点(5,f(5))处的切线斜率为【】
设0<P(A)<1,0<P(B)<1,P(A|B)+P()一1,则事件A和B
A、 B、 C、 D、 D
A、 B、 C、 D、 D
(2006年)设函数y=f(x)具有二阶导数,且f’(x)>0,f’’(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则()
(2007年)设某商品的需求函数为Q=160一2p,其中Q,p分别表示需求量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是()
(2015年)若函数z=z(x,y)由方程ex+2y+3z+xyz=1确定,则dz|(0,0)=_____。
(91年)试证明n维列向量组α1,α2,…,αn线性无关的充分必要条件是行列式其中αiT表示列向量αi的转置,i=1,2,…,n.
设方程在变换下化为a2z/auav=0求常数a。
证明对于不等式成立.
随机试题
燃煤锅炉结渣是个普遍性的问题,层燃炉、沸腾炉、煤粉炉都有可能结渣。结渣使受热面吸热能力减弱。降低锅炉的出力和效率,因此要对锅炉可能产生结渣的部分提前进行有效的预防。下列措施能起到预防锅炉结渣的是()。
简述《第二十二条军规》的思想意义。
首创哮喘病名的医家是
A.从出生到不满2岁B.从出生到不满1岁C.1岁到不满3岁D.2岁到不满3岁E.3岁到7岁每年应定期查体2次的是
此患儿最可能的诊断是此患儿如决定手术必须做的检查是
某办公大楼由主楼和裙楼两部分组成,平面呈不规则四方形,主楼29层,裙楼4层,地下2层,总建筑面积81650m2。该工程5月份完成主体施工,屋面防水施工安排在8月份。屋面防水层由一层聚氨酯防水涂料和一层自粘SBS高分子防水卷材构成。裙楼地下室回填土施
利用布置在设计开挖轮廓线上的爆破炮孔,获得一个平整的洞室开挖壁面的控制爆破方式是指()。
我国国有重点金融机构监事会的核心工作是()。
不能引起诉讼时效中止的法定事由是()。
PublicHealthPakistanPositionAvailable:DivisionofPublicHealthandClinicalNutrition.TheUniversityofKarac
最新回复
(
0
)