首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(一∞,+∞)上有界,且存在二阶导数.试证明:至少存在一点ξ∈(一∞,+∞)使f’’(ξ)=0.
设f(x)在(一∞,+∞)上有界,且存在二阶导数.试证明:至少存在一点ξ∈(一∞,+∞)使f’’(ξ)=0.
admin
2014-04-16
82
问题
设f(x)在(一∞,+∞)上有界,且存在二阶导数.试证明:至少存在一点ξ∈(一∞,+∞)使f
’’
(ξ)=0.
选项
答案
用反证法,设对一切xE(一∞,+∞),f
’’
(x)≠0,则要么对一切xE(一∞,+∞),f
’’
(x)>0,或者对一切x∈(一∞,+∞),f
’’
(x)<0.不妨设对一切x∈(一∞,+∞),f
’’
(x)>0.有以下两种解法:法一取x
1
使f
’
(x
1
)≠0.这种x
1
总存在的,因若不存在,则f
’
(x)≡0,从而与反证法的前提矛盾,取好x
1
之后,将f(x)在x=x
1
处按泰勒公式展开至n=1,有[*]若f
’
(x
1
)>0,令上式中的x→+∞;若f
’
(x
1
)<0,令上式中的x→一∞,总有[*],与f(x)在(一∞,+∞)上有界矛盾.此矛盾证明了反证法的前提有错,故知存在ξ∈(一∞,+∞)使f
’’
(ξ)=0.法二由对一切x∈(一∞,+∞),f
’’
(x)>0,故知对一切x,f
’
(x)严格单调增加.取x
1
使f
’
(x
1
)>0(若不然,取x
1
使f
’
(x
1
)<0),由拉格朗日中值定理,当x>x
1
时,有f(x)=f(z1)+f
’
(η)(x-x
1
)>f(x
1
)+f
’
(x
1
)(x-x
1
),令x→∞,得f(x)→∞,与f(x)有界矛盾.若f
’
(x
1
)<0,则当x<x
1
时,有f(x)=f(x
1
)+f
’
(η)(x-x
1
)>f(x
1
)+f
’
(x
1
)(x-x
1
),令x→一∞,得f(x)→+∞,与f(x)有界矛盾.此矛盾证明了反证法的前提有错,故知存在ξ∈(一∞,+∞),使f
’’
(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/hX34777K
0
考研数学二
相关试题推荐
(2010年)若=1,则a等于()
(97年)设在区间[a,b]上f(χ)>0,f′(χ)<0,fχ(χ)>0,令S1=∫abf(χ)dχ,S2=f(b)(b-a),S3=[f(a)+f(b)](b-a)则
(98年)设周期函数f(χ)在(-∞,+∞)内可导,周期为4,又=-1,则曲线y=f(χ)在点(5,f(5))处的切线斜率为【】
A、 B、 C、 D、 D
A、 B、 C、 D、 D
(2007年)设某商品的需求函数为Q=160一2p,其中Q,p分别表示需求量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是()
(2015年)若函数z=z(x,y)由方程ex+2y+3z+xyz=1确定,则dz|(0,0)=_____。
(2002年)设常数=_____。
设二次型f(x1,x2,x3)=x12+x22+x32+2ax1x2+2x1x3+2bx2x3的秩为1,且(0,1,-1)T为二次型的矩阵A的特征向量.(Ⅰ)求常数a,b;(Ⅱ)求正交变换X=QY,使二次型XTAX化为标准形。
随机试题
A.Ca2+内流B.Na+内流C.K+内流D.K+外流窦房结细胞动作电位0期去极化是由于
关于儿童糖尿病,错误的是:()
先天愚型染色体核型绝大部分为
在完全竞争市场上,整个行业的需求曲线是()。
在我国,公安机关的阶级属性是()。
劳动者在试用期内提前()日通知用人单位,可以解除劳动合同。
台风过后,某单位发起救灾捐款活动,甲、乙两部门的员工人数之比是4:3,捐款总额之比是5:4。若甲部门的人均捐款是300元,则乙部门的人均捐款是
全国各地的航空公司目前开始为旅行者提供互联网订票服务。然而,在近期内,电话订票并不会因此减少。除了以下哪项外,其他各项均有助于解释上述现象?
有如下程序:PrivateSubForm_Click()DimsAsInteger,pAsIntegerp=1Fori=1To4Forj=1Tois=s+jNe
WalkingtoExercisetheBrainDoyouthinksittingandstudyingallthetimewillimprovestudents’grades?Thinkagain.Getti
最新回复
(
0
)