首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n(n≥4)维向量组(I)α1,α2线性无关,(Ⅱ)β1,β2线性无关,且α1,α2分别与β1,β2正交,证明:α1,α2,β1,β2线性无关.
已知n(n≥4)维向量组(I)α1,α2线性无关,(Ⅱ)β1,β2线性无关,且α1,α2分别与β1,β2正交,证明:α1,α2,β1,β2线性无关.
admin
2017-10-19
28
问题
已知n(n≥4)维向量组(I)α
1
,α
2
线性无关,(Ⅱ)β
1
,β
2
线性无关,且α
1
,α
2
分别与β
1
,β
2
正交,证明:α
1
,α
2
,β
1
,β
2
线性无关.
选项
答案
考察 k
1
α
1
+k
2
α
2
+λ
1
β
1
+λ
2
β
2
=0. 两边分别对α
1
,α
2
作内积,由于(α
1
,β
1
)=0,(α
1
,β
2
)=0,(α
2
,β
1
)=0,(α
2
,β
2
)=0, 故得齐次方程组 [*] =(α
1
,α
1
)(α
2
,α
2
)一(α
1
,α
2
)
2
, 根据柯西一施瓦兹不等式,当α
1
,α
2
线性无关时,有(α
1
,α
2
)
2
<(α
1
,α
1
)(α
2
,α
2
),故方程组的系数行列式大于零(不等于零),方程组有唯一零解k
1
=k
2
=0,代入原式得 λ
1
β
1
+λ
2
β
2
=0. 由β
1
,β
2
线性无关,故λ
1
=λ
2
=0,从而k
1
=k
2
=λ
1
=λ
2
=0,故α
1
,α
2
,β
1
,β
2
线性无关. 51.解 因为矩阵A有三个线性无关的特征向量,λ=5是矩阵A的二重特征值,故λ=5必有两个线性无关的特征向量,因此r(5E—A)=1.由 5E—A=[*] 得a=0,b=一1.又因 5+5+λ
3
=1+3+5, 知矩阵A的特征值是λ
1
=λ
2
=5,λ
3
=一1. 又|A|=λ
1
.λ
2
.λ
3
=一25,伴随矩阵A
*
的特征值为[*](i=1,2,3),即一5,一5,
解析
转载请注明原文地址:https://kaotiyun.com/show/hZH4777K
0
考研数学三
相关试题推荐
求
设总体X的分布律为P(X=k)=(1—p)k—1p(k=1,2,…),其中p是未知参数,X1,X2,…,Xn为来自总体的简单随机样本,求参数p的矩估计量和极大似然估计量.
现有三个箱子,第一个箱子有4个红球,3个白球;第二个箱子有3个红球,3个白球;第三个箱子有3个红球,5个白球;先取一只箱子,再从中取一只球.(1)求取到白球的概率;(2)若取到红球,求红球是从第二个箱子中取出的概率.
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
设α1,…,αn为n个m维向量,且m<n.证明:α1…,αn线性相关.
证明:当0<x<1时,(1+x)ln2(1+x)<x2.
设xy=xf(x)+yg(z),且xf’(z)+yg’(z)≠0,其中z=z(x,y)是z,y的函数.证明:
判断级数的敛散性,若级数收敛,判断其是绝对收敛还是条件收敛.
求曲线y=的上凸区间.
设A是n阶可逆阵,其每行元素之和都等于常数a.证明:(1)a≠0;(2)A-1的每行元素之和均为.
随机试题
旋塞阀开关不灵活的原因是()。
关于审美形态的界定,历史上的说法多种多样,主要包括()
符合多毛细胞白血病的检验结果是
有关膜剂的表述,不正确的是
我国注册咨询工程师(投资)的执业范围包括:()。
下列冷却水系统供水方式中,()一般适用于水源水量充足的地方。
职业健康安全管理体系标准由5大要素构成,其循环的顺序为()。
A、B、C三家施工单位签订了共同投标协议组成联合体,以一个投标人的身份投标,该联合体接到中标通知书后经认真测算发现该项目投标报价过低,遂决定放弃该项目。全占果导致招标人重新招标、工程竣工日期后延。下列关于联合体承担赔偿责任的叙述中,正确的有()。
《春秋》是我国现存最早的编年体史书。()
Moneyseemscutanddried—youcanrepresentitwithnumbersand【C1】______points,andifyoustickyourhandinyourpocketyou
最新回复
(
0
)