首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n(n≥4)维向量组(I)α1,α2线性无关,(Ⅱ)β1,β2线性无关,且α1,α2分别与β1,β2正交,证明:α1,α2,β1,β2线性无关.
已知n(n≥4)维向量组(I)α1,α2线性无关,(Ⅱ)β1,β2线性无关,且α1,α2分别与β1,β2正交,证明:α1,α2,β1,β2线性无关.
admin
2017-10-19
67
问题
已知n(n≥4)维向量组(I)α
1
,α
2
线性无关,(Ⅱ)β
1
,β
2
线性无关,且α
1
,α
2
分别与β
1
,β
2
正交,证明:α
1
,α
2
,β
1
,β
2
线性无关.
选项
答案
考察 k
1
α
1
+k
2
α
2
+λ
1
β
1
+λ
2
β
2
=0. 两边分别对α
1
,α
2
作内积,由于(α
1
,β
1
)=0,(α
1
,β
2
)=0,(α
2
,β
1
)=0,(α
2
,β
2
)=0, 故得齐次方程组 [*] =(α
1
,α
1
)(α
2
,α
2
)一(α
1
,α
2
)
2
, 根据柯西一施瓦兹不等式,当α
1
,α
2
线性无关时,有(α
1
,α
2
)
2
<(α
1
,α
1
)(α
2
,α
2
),故方程组的系数行列式大于零(不等于零),方程组有唯一零解k
1
=k
2
=0,代入原式得 λ
1
β
1
+λ
2
β
2
=0. 由β
1
,β
2
线性无关,故λ
1
=λ
2
=0,从而k
1
=k
2
=λ
1
=λ
2
=0,故α
1
,α
2
,β
1
,β
2
线性无关. 51.解 因为矩阵A有三个线性无关的特征向量,λ=5是矩阵A的二重特征值,故λ=5必有两个线性无关的特征向量,因此r(5E—A)=1.由 5E—A=[*] 得a=0,b=一1.又因 5+5+λ
3
=1+3+5, 知矩阵A的特征值是λ
1
=λ
2
=5,λ
3
=一1. 又|A|=λ
1
.λ
2
.λ
3
=一25,伴随矩阵A
*
的特征值为[*](i=1,2,3),即一5,一5,
解析
转载请注明原文地址:https://kaotiyun.com/show/hZH4777K
0
考研数学三
相关试题推荐
设x,y为两个随机变量,D(X)=4,D(Y)=9,相关系数为,则D(3X一2Y)=__________。
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
设f(x)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得∈f’(ξ)一f(ξ)=f(2)一2f(1).
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求.
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵). 求:(1)二次型XTAX的标准形;(2)|E+A+A2+…+An|的值.
设A=,且AX=0的基础解系含有两个线性无关的解向量,求AX=0的通解.
把二重积分写成极坐标下的累次积分的形式(先r后θ),其中D由直线x+y=1,x=1,y=1围成.
改变积分次序并计算
设随机变量X的密度函数为f(x),且f(x)为偶函数,X的分布函数为F(x),则对任意实数a,有().
积分=________.
随机试题
设y=exlnx,求y’。
下列关于就诊率的叙述正确的是()。
以软骨变性破坏为主要病理改变的风湿病是
城市规划师的作用与角色是()。
在工程网络计划中,判别关键工作的条件是( )。
以下不属于现行广告监管体制管理模式的是()。
患者,女,55岁,2小时前突然呕血,总量约1200ml,伴头晕、心慌。查体:血压80/50mmHg,心率130次/分,巩膜轻度黄染,腹膨隆,肝未触及,脾肋下2cm可及,腹部移动性浊音(+)。该患者应首先采取以下哪种治疗措施?()
已知100个正整数的和等于10000,在这些数里,奇数比偶数多,则这些数里至多有偶数的个数为()。
山东省2010年至2014年的粮食、棉花、油料总产量(单位:万吨)和单产(单位:千克/公顷)如下表:2010年至2014年山东省粮食总产量的增速最快的是()年。
Saleswoman:Isthereanythingelse?Customer:______
最新回复
(
0
)