首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n(n≥4)维向量组(I)α1,α2线性无关,(Ⅱ)β1,β2线性无关,且α1,α2分别与β1,β2正交,证明:α1,α2,β1,β2线性无关.
已知n(n≥4)维向量组(I)α1,α2线性无关,(Ⅱ)β1,β2线性无关,且α1,α2分别与β1,β2正交,证明:α1,α2,β1,β2线性无关.
admin
2017-10-19
30
问题
已知n(n≥4)维向量组(I)α
1
,α
2
线性无关,(Ⅱ)β
1
,β
2
线性无关,且α
1
,α
2
分别与β
1
,β
2
正交,证明:α
1
,α
2
,β
1
,β
2
线性无关.
选项
答案
考察 k
1
α
1
+k
2
α
2
+λ
1
β
1
+λ
2
β
2
=0. 两边分别对α
1
,α
2
作内积,由于(α
1
,β
1
)=0,(α
1
,β
2
)=0,(α
2
,β
1
)=0,(α
2
,β
2
)=0, 故得齐次方程组 [*] =(α
1
,α
1
)(α
2
,α
2
)一(α
1
,α
2
)
2
, 根据柯西一施瓦兹不等式,当α
1
,α
2
线性无关时,有(α
1
,α
2
)
2
<(α
1
,α
1
)(α
2
,α
2
),故方程组的系数行列式大于零(不等于零),方程组有唯一零解k
1
=k
2
=0,代入原式得 λ
1
β
1
+λ
2
β
2
=0. 由β
1
,β
2
线性无关,故λ
1
=λ
2
=0,从而k
1
=k
2
=λ
1
=λ
2
=0,故α
1
,α
2
,β
1
,β
2
线性无关. 51.解 因为矩阵A有三个线性无关的特征向量,λ=5是矩阵A的二重特征值,故λ=5必有两个线性无关的特征向量,因此r(5E—A)=1.由 5E—A=[*] 得a=0,b=一1.又因 5+5+λ
3
=1+3+5, 知矩阵A的特征值是λ
1
=λ
2
=5,λ
3
=一1. 又|A|=λ
1
.λ
2
.λ
3
=一25,伴随矩阵A
*
的特征值为[*](i=1,2,3),即一5,一5,
解析
转载请注明原文地址:https://kaotiyun.com/show/hZH4777K
0
考研数学三
相关试题推荐
=__________
设f(x)=,则当x→0时,f(x)是g(x)的().
设随机变量X万差为2,则根据切比雪夫不等式有估计P{|X—E(X)|≥2}≤__________.
袋中有12只球,其中红球4个,白球8个,从中一次抽取两个球,求—F3i事件发生的概率:(1)两个球中一个是红球一个是白球;(2)两个球颜色相同.
设z=f[xg(y),x—y],其中f二阶连续可偏导,g二阶可导,求
设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E.证明:B的列向量组线性无关.
设向量组α1,α2,α3,α4线性无关,则向量组().
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,AB≠0.证明:齐次线性方程组BY=0有零解,其中B=(β,β+α1,…,β+αs).
设函数f(x)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.证明:存在ξ∈(0,3),使得f’(ξ)=0.
设A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式,证明下列结论:aij=-AijATA=E且|A|=-1.
随机试题
下列关于借贷记账法的说法,错误的是()。
腓骨上段骨折后,踝背屈、外翻无力,则提不
患者王某,女,32岁,在得知自己被确诊为乳腺癌早期时,忍不住躺在病床上失声痛哭。这时护士小高轻轻走近王某,在她的床边坐下,默默递给她一张面巾纸,并轻轻地拍拍她的肩膀。从人际传播技巧上说,小王的传播行为属于
A.扎莫特罗B.依那普利C.米力农D.地高辛E.洋地黄毒苷
下列对基本概念的叙述,错误的是()。
我国市场体系的改革从()方面展开。
钟表发条(铜制)()
可转换公司债券如何进行初始确认?
一果农想将一块平整的正方形土地分割为四块小的正方形土地,并将果树均匀整齐的种植在土地的所有边界上,且在每块土地的四个角上都种上一棵果树,该果农未经细算就购买了60棵果树,如果仍按上述想法种植,那么他至少多买了多少棵果树?
有以下程序#include#includevoidmain(){charstr[][20]={"One*World","One*Dream!"},*p=str[1];printf("%d,",str1
最新回复
(
0
)