首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2002年] 设函数y=f(x)在(0,+∞)内有界且可导,则( ).
[2002年] 设函数y=f(x)在(0,+∞)内有界且可导,则( ).
admin
2021-01-19
50
问题
[2002年] 设函数y=f(x)在(0,+∞)内有界且可导,则( ).
选项
A、当
f(x)=0时,必有
f′(x)=0
B、当
f′(x)存在时,必有
f′(x)=0
C、当
f(x)=0时,必有
f′(x)=0
D、当
f′(x)存在时,必有
f′(x)=0
答案
B
解析
用拉格朗日中值定理证明(B)正确,也可用排错法得到正确选项.
解一 利用命题1.2.4.1和反证法证明仅(B)入选.事实上,如
f′(x)=a≠0,当A>0时,由命题1.2.4.1(1)知,
f(x)=+∞与f(x)有界矛盾.当a<0时,由命题1.2.4.1(1)知,
f(x)=一∞与f(x)有界矛盾.综上所述,
f′(x)=a=0.
解二 仅(B)入选.用反证法证之.假设
f′(x)=a≠0,不妨设a>0,则必存在x
0
>0,
使当x>x
0
时,有f′(x)>a/2.在[x
0
,x]上使用拉格朗日中值定理,则存在ξ∈(x
0
,x),使得
f(x)=f(x
0
)+f′(ξ)(x—x
0
)>f(x
0
)+a(x一x
0
)/2.
当x→+∞时,有
f(x)=+∞,这与f(x)有界矛盾.
转载请注明原文地址:https://kaotiyun.com/show/hj84777K
0
考研数学二
相关试题推荐
求下列隐函数的微分或导数:(Ⅰ)设ysinx-cos(x-y)=0,求dy;(Ⅱ)设方程确定y=y(x),求y’与y’’.
设A=,其中A可逆,求B-1
设连续性总体X的分布函数为其中θ(θ>0)为未知参数,从总体X中抽取样本X1,X2,…,Xn,求(1)θ的矩估计量;(2)θ的最大似然估计量.
已知是函数f(x)的一个原函数,求∫x3f’(x)dx.
求下列方程的通解:(Ⅰ)y’’3y’=2-6x;(Ⅱ)y’’+y=ccosxcos2x.
已知四元非齐次线性方程组系数矩阵的秩为2,它的三个解向量为η1,η2,η3,且η1+2η2=(2,0,5,-1)T,η1+2η3=(4,3,-1,5)T,η3+2η1=(1,0,-1,2)T求方程组的通解。
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证:(Ⅰ)存在η∈(1/2,1),使f(η)=η;(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
设f(x,y)为连续函数,且f(x,y)=y2+f(x,y)dxdy,则f(x,y)=_______
(1997年)已知y=f(χ)对一切的χ满足χf〞(χ)+3χ[f′(χ)]2=1-e-χ,若f′(χ0)=0(χ0≠0),则【】
随机试题
下列哪条血管是寻找胰腺体尾部的标志
A.泪腺神经B.眼神经C.额神经D.上颌神经E.鼻睫状神经支配上、下睑处皮肤的神经为
A.痢疾志贺菌B.福氏志贺菌C.鲍氏志贺菌D.史密斯志贺菌E.宋内志贺菌我国细菌性痢疾流行有上升趋势的菌群
真武汤中白芍的主要作用有()
收款凭证通常设置的限制类型是()。
早期的期货市场对于供求双方来讲,均起到了()的作用。
公务员晋升正科、正处级职务,需分别任副科、副处()。
文化教育学认为教育的根本目的是()。
在单链表中,增加头结点的目的是
WhatdoIwant?It’sreallyavery【C1】______question:yetmanyofusarenotsure.【C2】______itdoesn’thavetobeallthatdi
最新回复
(
0
)