首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2002年] 设函数y=f(x)在(0,+∞)内有界且可导,则( ).
[2002年] 设函数y=f(x)在(0,+∞)内有界且可导,则( ).
admin
2021-01-19
36
问题
[2002年] 设函数y=f(x)在(0,+∞)内有界且可导,则( ).
选项
A、当
f(x)=0时,必有
f′(x)=0
B、当
f′(x)存在时,必有
f′(x)=0
C、当
f(x)=0时,必有
f′(x)=0
D、当
f′(x)存在时,必有
f′(x)=0
答案
B
解析
用拉格朗日中值定理证明(B)正确,也可用排错法得到正确选项.
解一 利用命题1.2.4.1和反证法证明仅(B)入选.事实上,如
f′(x)=a≠0,当A>0时,由命题1.2.4.1(1)知,
f(x)=+∞与f(x)有界矛盾.当a<0时,由命题1.2.4.1(1)知,
f(x)=一∞与f(x)有界矛盾.综上所述,
f′(x)=a=0.
解二 仅(B)入选.用反证法证之.假设
f′(x)=a≠0,不妨设a>0,则必存在x
0
>0,
使当x>x
0
时,有f′(x)>a/2.在[x
0
,x]上使用拉格朗日中值定理,则存在ξ∈(x
0
,x),使得
f(x)=f(x
0
)+f′(ξ)(x—x
0
)>f(x
0
)+a(x一x
0
)/2.
当x→+∞时,有
f(x)=+∞,这与f(x)有界矛盾.
转载请注明原文地址:https://kaotiyun.com/show/hj84777K
0
考研数学二
相关试题推荐
解线性方程组
设n阶非零实方阵A的伴随矩阵为A*,且A*=AT.证明|A|≠0.
设A=,其中A可逆,求B-1
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
已知A,B是反对称矩阵,证明:A2是对称矩阵;
求函数f(x)=nx(1一x)n在[0,1]上的最大值M(n)及.
设函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式f’(x)+f(x)一∫0xf(t)dt=0。证明:当x≥0时,成立不等式e-x≤f(x)≤1。
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证:(Ⅰ)存在η∈(1/2,1),使f(η)=η;(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
(2005年)已知函数f(χ)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(Ⅰ)存在ξ∈(0,1),使得f(ξ)=1-ξ;(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f′(η)f′(ζ)=1.
(1997年试题,三(2))设y=y(x)由所确定,求
随机试题
(2008年10月)我国《公司法》对股份有限公司发起人的要求是发起人应为_______,其中须有半数以上的发起人存币国境内有往所。
因咳嗽5天伴发热2天的支气管炎患儿,不应采取的治疗措施是
麻醉中的手术病人因溶血反应出现的唯一最早征象是()
某投资者买进执行价格为280美分/蒲式耳的7月小麦看涨期权,权利金为15美分/蒲式耳。卖出执行价格为290美分蒲式耳的7月小麦看涨期权,权利金为11美分/蒲式耳。则其损益平衡点为()美分/蒲式耳。
关于“净经营资产增加”的计算式子,下列不正确的有()。
无论一般纳税人还是小规模纳税人销售自己使用过的旧固定资产,自2002年1月1日起按4%的征收率减半征收增值税。()
劳动是创造财富的手段,也是获取和享有财富的前提。()
2011年,某市工业企业(规模以上,下同)用水总量193.27亿立方米,比上年减少1.66亿立方米。其中,取水总量41.26亿立方米,增加0.57亿立方米;河湖海冷却水86.25亿立方米,增加1.09亿立方米。2011年该市工业企业用水总量同比减少了
真理观中的首要问题是()
RowenaandBillyWrangleraremodelhighschoolstudents.Theystudyhardanddoextremelywellonachievementtests.Andnexty
最新回复
(
0
)