首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列方程的通解: (Ⅰ)y’’3y’=2-6x; (Ⅱ)y’’+y=ccosxcos2x.
求下列方程的通解: (Ⅰ)y’’3y’=2-6x; (Ⅱ)y’’+y=ccosxcos2x.
admin
2019-06-28
61
问题
求下列方程的通解:
(Ⅰ)y’’3y’=2-6x;
(Ⅱ)y’’+y=ccosxcos2x.
选项
答案
(Ⅰ)先求相应齐次方程的通解,由于其特征方程为λ
2
-3λ=λ(λ-3)=0,所以通解为 [*]=C
1
+C
2
e
3x
. 再求非齐次方程的特解,由于其自由项为一次多项式,而且0是特征方程的单根,所以特解应具有形式y
*
(x)=x(Ax+B),代入原方程,得 [y
*
(x)]’’-3[y
*
(x)]’=2A-3(2Ax+B)=-6Ax+2A-3B=2-6x. 比较方程两端的系数,得[*]解得A=1,B=0,即特解为y
*
(x)=x
2
.从而,原方程的通解为y(x)=x
2
+C
1
+C
2
e
3x
,其中C
1
,C
2
为任意常数. (Ⅱ)由于cosxcos2x=[*](cosx+cos3x),根据线性微分方程的叠加原理,可以分别求出y’’+y=[*]cosx与y’’+y=[*]cos3x的特解y
1
*
(x)与y
2
*
(x),相加就是原方程的特解. 由于相应齐次方程的特征方程为λ
2
+1=0,特征根为±i,所以其通解应为C
1
cosx+C
2
sinx;同时y’’+y=[*]cosx的特解应具形式:y
1
*
(x)=Axcosx+Bxsinx,代入原方程,可求得A=0,B=[*].y
1
*
(x)=[*]sinx. 另外,由于3i不是特征根,所以另一方程的特解应具形式y
2
*
(x)=Ccos3x+Dsin3x,代入原方程,可得C=[*],D=0.这样,即得所解方程的通解为y(x)=[*]cos3x+C
1
cosx+C
2
sinx,其中C
1
,C
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/idV4777K
0
考研数学二
相关试题推荐
设B=(E+A)-1(E—A),则(E+B)-1=_________?
若二次曲面的方程为x2+3y2+x2+2axy+2xz+2yx=4,经正交变换化为y12+4z12=4,则a=_________.
交换积分次序f(χ,y)dy=_______.
1/2这里Z是X和Y的函数,跟通常不同,这里是分段函数.要考虑X与Z的独立性,先要确定X和Z的边缘分布,X的边缘分布是已知,因而需要确定的是Z的边缘分布,然后要求X和Z的联合分布.P{Z=1}=P{X+Y为偶数}=P{X=1,Y=1}+P{X
曲线y=x+的凹区间是________.
设函数,则dz|(1,1)=__________。
曲线处的切线方程为__________。
设。对(Ⅰ)中的任意向量ξ2,ξ3,证明:ξ1,ξ2,ξ3线性无关。
设函数f(x)=若反常积分∫1+∞f(x)dx收敛,则()
求方程y’’+2my’+n2y=0的通解;又设y=y(x)是满足初始条件y(0)=a,y’(0)=b的特解,求∫0+∞y(x)dx,其中m>n>0,a,b为常数.
随机试题
慢性房颤最常见的并发症为
A、不致出现过敏现象B、柔软、滑润,无板硬、黏着不适感C、不会刺激皮肤引起皮炎D、能使疮口早日愈合E、富有黏性,能固定患部,使患部减少活动使用油膏的主要优点有
企业进行会计数字比较的方式包括()。
以下关于生活常识,说法不正确的是()。
旅游行业核心价值观中的“游客为本”与“服务至诚”之间是()的关系。
社会工作者小陈负责“关爱社区失独老人”服务项目,为了完成项目的各项工作,他招募了一批护理、法律等方面的志愿者参与到项目中,下列为这些志愿者准备的培训内容,符合要求的是()
国务院全体会议由国务院总理、副总理、各部部长、各委员会主任、审计长、秘书长和()组成。
近年来,伯来鸟的数量急剧减少,这种肉食鸟一般栖息于平原,如农场或牧场。一些鸟类学家认为这是由于一种新型杀虫剂导致伯来鸟赖以为食的昆虫急剧减少的结果。以下哪项中提出来的问题最不能帮助我们重新判断上述推理是否有效?
Thefollowingisamenuofamobile(移动的)phone.Afterreadingit,youarerequiredtofindtheitemsequivalentto(与......等同)th
Thetendencynowadaystowanderinwildernessesisdelightfultosee.Thousandsoftired,nerve-shaking,over-civilizedpeoplea
最新回复
(
0
)