首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列方程的通解: (Ⅰ)y’’3y’=2-6x; (Ⅱ)y’’+y=ccosxcos2x.
求下列方程的通解: (Ⅰ)y’’3y’=2-6x; (Ⅱ)y’’+y=ccosxcos2x.
admin
2019-06-28
77
问题
求下列方程的通解:
(Ⅰ)y’’3y’=2-6x;
(Ⅱ)y’’+y=ccosxcos2x.
选项
答案
(Ⅰ)先求相应齐次方程的通解,由于其特征方程为λ
2
-3λ=λ(λ-3)=0,所以通解为 [*]=C
1
+C
2
e
3x
. 再求非齐次方程的特解,由于其自由项为一次多项式,而且0是特征方程的单根,所以特解应具有形式y
*
(x)=x(Ax+B),代入原方程,得 [y
*
(x)]’’-3[y
*
(x)]’=2A-3(2Ax+B)=-6Ax+2A-3B=2-6x. 比较方程两端的系数,得[*]解得A=1,B=0,即特解为y
*
(x)=x
2
.从而,原方程的通解为y(x)=x
2
+C
1
+C
2
e
3x
,其中C
1
,C
2
为任意常数. (Ⅱ)由于cosxcos2x=[*](cosx+cos3x),根据线性微分方程的叠加原理,可以分别求出y’’+y=[*]cosx与y’’+y=[*]cos3x的特解y
1
*
(x)与y
2
*
(x),相加就是原方程的特解. 由于相应齐次方程的特征方程为λ
2
+1=0,特征根为±i,所以其通解应为C
1
cosx+C
2
sinx;同时y’’+y=[*]cosx的特解应具形式:y
1
*
(x)=Axcosx+Bxsinx,代入原方程,可求得A=0,B=[*].y
1
*
(x)=[*]sinx. 另外,由于3i不是特征根,所以另一方程的特解应具形式y
2
*
(x)=Ccos3x+Dsin3x,代入原方程,可得C=[*],D=0.这样,即得所解方程的通解为y(x)=[*]cos3x+C
1
cosx+C
2
sinx,其中C
1
,C
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/idV4777K
0
考研数学二
相关试题推荐
设y=y(z)满足△y==______
将∫01dy∫0yf(x2+y2)dx化为极坐标下的二次积分为_________。
设z=f(t,et)dt,其中f是二元连续函数,则dz=________.
设A为n阶矩阵,|A|≠0,A*为A的伴随矩阵.层为n阶单位矩阵,若A有特征值λ,则(A*)2+E必有特征值__________.
向量组α1=[0,4,2-k],α2=[2,3-k,1],α3=[1-k,2,3]线性相关,则实数k=_______.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明f在正交变化下的标准形为2y12+y22。
如图,曲线C的方程为y=f(x),点(3,2)是它的一个极点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4)。设函数f(x)具有三阶连续导数,计算定积分∫03(x2+x)f"’(x)dx。
设二阶可导函数f(x)满足f(1)=f(-1)=1,f(0)=-1且f"(x)>0,则()
设二元函数计算二重积分f(x,y)dσ,其中D={(x,y)||x|+|y|≤2}。
求极限:.
随机试题
汽车检测:
简述中共十七大的主题和完成的使命。
由于环境因素或人为因素的干扰,致使土地生态系统的结构和功能失调叫做()。
A族溶血性链球菌中致病力最强的一型是()
A、新生儿期B、婴儿期C、幼儿期D、幼童期E、儿童期小儿生长发育最快的时期是
同一个房屋征收范围内的房屋征收评估工作,原则上由()家房地产估价机构承担。
资本结构的调整可通过债券与股票之间的交换来完成,如果公司希望提高负债比率,可发行新的债券来交换流通在外的股票,而想转向更保守资本结构的公司则可以通过发行新的股票来交换流通在外的债券。一些研究发现,以债券交换股票是利好消息,公告时股价上升而用股票来交换债券则
Onereasonhumanbeingscanthriveinallkindsofclimatesisthattheycancontrolthequalitiesoftheairintheenclosedsp
A、 B、 C、 D、 A机内码是汉字交换码(国标码)两个字节的最高位分别加1,即汉字交换码(国标码)的两个字节分别加80H得到对应的机内码。大部分汉字系统都采用将国标码每个字节最高位置1作为汉字机内码。
ForadevelopingcountrylikeIndiawhoseecologicalandsocio-economicsystemsarealreadyunderpressurefromrapidurbaniza
最新回复
(
0
)