首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设{(an,bn)}是一个严格开区间套,即满足a1<a2<…an<bn<b2<b1且(bn-an)=0.证明:存在唯一的一点ξ.使得an<ξ<bn,n=1,2,….
设{(an,bn)}是一个严格开区间套,即满足a1<a2<…an<bn<b2<b1且(bn-an)=0.证明:存在唯一的一点ξ.使得an<ξ<bn,n=1,2,….
admin
2022-11-23
29
问题
设{(a
n
,b
n
)}是一个严格开区间套,即满足a
1
<a
2
<…a
n
<b
n
<b
2
<b
1
且
(b
n
-a
n
)=0.证明:存在唯一的一点ξ.使得a
n
<ξ<b
n
,n=1,2,….
选项
答案
证法一 作闭区间列{[x
n
,y
n
]},其中[*],n=1,2.….由于a
n
<x
n
<a
n+1
,b
n+1
<y
n
<b
n
([*]n∈N),从而有 (1)(a
n+1
,b
n+1
)[*][x
n
,y
n
][*](a
n
,b
n
)([*]n∈N),故[x
n+1
,y
n+1
][*][x
n
,y
n
],n=1,2,…. (2)0<y
n
-x
n
<b
n
-a
n
([*]n∈N). 从而由[*].所以{[x
n
,y
n
]}为闭区间套.由区间套定理知,存在唯一的实数ξ∈[x
n
,y
n
](n=1.2.…).由(1)知,存在唯一的ξ满足a
n
<ξ<b
n
,n=1,2.…. 证法二 由题设知,{[a
n
,b
n
])是一个闭区间套.由区间套定理知,存在唯一的点ξ,使得a
n
≤ξ≤b
n
,n=1,2,….又因a
n-1
<a
n
<b
n
<b
n-1
,所以a
n-1
<ξ<b
n-1
,n=2,3,…,即a
n
<ξ<b
n
,n=1,2,….
解析
转载请注明原文地址:https://kaotiyun.com/show/hlgD777K
0
考研数学一
相关试题推荐
甲、乙订立合同,约定甲应于2019年8月1日交货,乙应于同年8月7日付款。7月底,甲发现乙财产状况恶化,没有付款能力,并且有确切证据予以证明,甲便中止履行。后乙在合理期限内无力履约。对此,下列表述正确的是()。
一次足球比赛,采用积分制,胜一场得9分,平局得5分,负一场得2分.某队共比赛10场,且胜、负、平都有,共得61分,那么该队最多胜()场.
没有一个宗教命题能够通过观察或实验而被验证为真。所以,无法知道任何宗教命题的真实性。为了合乎逻辑地推出上述结论,需要假设下面哪项为前提?
设a,b,c是△ABC的三边长,二次函数,则△ABC是()。
已知实数x,y满足等式,则3x2-3y2+2x-y-=()。
函数y=f(x)的图像关于直线x=1对称,若方程f(x)=0有四个不等实根x1,x2,x3,x4,则x1+x2+x3+x4=()。
已知圆O1与圆O2的半径为分别为2cm和3cm,圆心距O1O2为6cm,则圆O1与圆O2的公切线有()。
求下列不定积分;∫e-xcosxdx;
作函数y=x-2arctanx的图像.
应用系统开发中可以采用不同的开发模型,其中,____①____将整个开发流程分为目标设定、风险分析、开发和有效性验证、评审四个部分:____②____则通过重用来提高软件的可靠性和易维护性,程序在进行修改时产生较少的副作用。①
随机试题
下述哪项不是肠系膜上动脉的分支()
世界卫生组织推荐母乳喂养儿开始添加辅食的月龄是
根据作用机制将口服降血糖药分为()。
A.5日B.10日C.15日D.30日药品经营企业变更许可事项的,应当在许可事项发生变更多长时间之前,向原发证机关申请《药品经营许可证》变更登记()
小肠病变引起的腹痛多在
控制事故的最好方式是()。
某医院改扩建工程于2006年5月1日申报竣工,同年5月10日竣工验收合格,5月20日工程移交,5月24日办理了竣工验收备案手续。总包施工单位提交了工程质量保修书。在保修期间,建设单位找了一个家装施工队进行地板改造,将地埋采暖管损坏,冬季供暖时发生了跑水事故
智育
人体所有细胞都是由细胞膜、细胞质、细胞核三部分组成。()
Whatcanwelearnfromtoday’syouth?
最新回复
(
0
)