首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设D=((x,y)|a≤x≤b,c≤y≤d},若f"xy与f"yx在D上连续,证明: (2)设D为xOy平面上的区域,若f"xy与f"yx都在D上连续,证明:f"xy与f"yx在D上相等.
(1)设D=((x,y)|a≤x≤b,c≤y≤d},若f"xy与f"yx在D上连续,证明: (2)设D为xOy平面上的区域,若f"xy与f"yx都在D上连续,证明:f"xy与f"yx在D上相等.
admin
2018-08-12
90
问题
(1)设D=((x,y)|a≤x≤b,c≤y≤d},若f"
xy
与f"
yx
在D上连续,证明:
(2)设D为xOy平面上的区域,若f"
xy
与f"
yx
都在D上连续,证明:f"
xy
与f"
yx
在D上相等.
选项
答案
(1)[*]f"
xy
(x,y)dxdy=∫
a
b
dx∫
c
d
f’
xy
(x,y)=∫
a
b
f’
x
(x,y)∫
c
d
dx =∫
a
b
[f’
x
(x,d)一f’
x
(x,c)]dx =f(x,d)|
a
b
—f(x,c)|
a
b
=f(b,d)一f(a,d)+f(a,c)一f(b,c). 同理, [*]f"
yx
(x,y)dxdy=∫
c
d
dy∫
a
b
f"
yx
(x,y)dx=f(b,d)一f(a,d)+f(a,c)一f(b,c). 结论成立. (2)用反证法. 设存在P
0
(x
0
,y
0
)∈D,有f"
xy
(x
0
,y
0
)≠f"
yx
(x
0
,y
0
). 不妨设f"
xy
(x
0
,y
0
)一f"
yx
(x
0
,y
0
)>0,由于 [*][f"
xy
(x,y)一f"
yx
(x,y)]=f"
xy
(x
0
,y
0
)一f"
yx
(x
0
,y
0
)>0. 由极限的保号性,[*]ε
0
>0,δ>0,当P(x,y)∈U(P
0
,δ)时有 f"
xy
(x,y)一f"
yx
(x,y)>ε
0
. [*] 由(1)有,[*][f"
xy
(x,y)一f"
yx
(x,y)]dxdy=0,这与上述结论矛盾,故f"
xy
(x,y)与f"
yx
(x,y)在D上相等.
解析
转载请注明原文地址:https://kaotiyun.com/show/hmj4777K
0
考研数学二
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:存在η∈(a,b),使得ηf’(η)+f(η)=0.
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),且f(a)=0.证明:存在ξ∈(a,b),使得f(ξ)=
=_______
证明:当x>0时,(x2-1)lnx≥(x-1)2.
设由方程xef(y)=ey确定y为x的函数,其中f(x)二阶可导,且f’≠1,则=_______
设f(x)在[0,1]上二阶可导,且|f"(x)|≤1(x∈[0,1]),又f(0)=f(1),证明:
计算dxdy,其中D是由曲线y=-a+和直线y=-x所围成的区域.
一条曲线经过点(2,0),且在切点与y轴之间的切线长为2,求该曲线.
求曲线的斜渐近线.
已知α1,α2,α3,α4是线性方程组Ax=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1,讨论实数t满足
随机试题
下列哪项不是肝硬化出血的原因
感染钩端螺旋体的主要途径是
地方性甲状腺肿的主要发病原因是()。
( )负责会计从业资格管理、会计专业技术职务资格管理、会计人员评优表彰奖惩以及会计人员继续教育。
乙公司原材料按计划成本计价核算。2015年6月1日“原材料”账户借方余额为4000万元、“材料成本差异”账户贷方余额50万元,月初“原材料”账户余额中含有5月31日暂估入账的原材料成本1500万元。2015年6月公司入库原材料的计划成本为5000万元
中外合资经营企业可以增加注册资本,其必须履行的法定程序是()。
《中华人民共和国合同法》规定,有下列()情形之一的,当事人可以解除合同。
国家管理其实就是行政管理。()
新近一项研究发现,海水颜色能够让飓风改变方向,也就是说,如果海水变色,飓风的移动路径也会变向。这也就意味着科学家可以根据海水的“脸色”判断哪些地区将被飓风袭击,哪些地区会幸免于难。值得关注的是,全球气候变暖可能已经让海水变色。以下哪项最可能是科学家作出判断
Theenvironmentofthechemicalagestretchbeyondtheauthorityofanyexistingpoliticalandsocialinstitutions.Mattersoft
最新回复
(
0
)