(1)设D=((x,y)|a≤x≤b,c≤y≤d},若f"xy与f"yx在D上连续,证明: (2)设D为xOy平面上的区域,若f"xy与f"yx都在D上连续,证明:f"xy与f"yx在D上相等.

admin2018-08-12  35

问题 (1)设D=((x,y)|a≤x≤b,c≤y≤d},若f"xy与f"yx在D上连续,证明:
   
    (2)设D为xOy平面上的区域,若f"xy与f"yx都在D上连续,证明:f"xy与f"yx在D上相等.

选项

答案(1)[*]f"xy(x,y)dxdy=∫abdx∫cdf’xy(x,y)=∫abf’x(x,y)∫cddx =∫ab[f’x(x,d)一f’x(x,c)]dx =f(x,d)|ab—f(x,c)|ab =f(b,d)一f(a,d)+f(a,c)一f(b,c). 同理, [*]f"yx(x,y)dxdy=∫cddy∫abf"yx(x,y)dx=f(b,d)一f(a,d)+f(a,c)一f(b,c). 结论成立. (2)用反证法. 设存在P0(x0,y0)∈D,有f"xy(x0,y0)≠f"yx(x0,y0). 不妨设f"xy(x0,y0)一f"yx(x0,y0)>0,由于 [*][f"xy(x,y)一f"yx(x,y)]=f"xy(x0,y0)一f"yx(x0,y0)>0. 由极限的保号性,[*]ε0>0,δ>0,当P(x,y)∈U(P0,δ)时有 f"xy(x,y)一f"yx(x,y)>ε0. [*] 由(1)有,[*][f"xy(x,y)一f"yx(x,y)]dxdy=0,这与上述结论矛盾,故f"xy(x,y)与f"yx(x,y)在D上相等.

解析
转载请注明原文地址:https://kaotiyun.com/show/hmj4777K
0

最新回复(0)