首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设D=((x,y)|a≤x≤b,c≤y≤d},若f"xy与f"yx在D上连续,证明: (2)设D为xOy平面上的区域,若f"xy与f"yx都在D上连续,证明:f"xy与f"yx在D上相等.
(1)设D=((x,y)|a≤x≤b,c≤y≤d},若f"xy与f"yx在D上连续,证明: (2)设D为xOy平面上的区域,若f"xy与f"yx都在D上连续,证明:f"xy与f"yx在D上相等.
admin
2018-08-12
52
问题
(1)设D=((x,y)|a≤x≤b,c≤y≤d},若f"
xy
与f"
yx
在D上连续,证明:
(2)设D为xOy平面上的区域,若f"
xy
与f"
yx
都在D上连续,证明:f"
xy
与f"
yx
在D上相等.
选项
答案
(1)[*]f"
xy
(x,y)dxdy=∫
a
b
dx∫
c
d
f’
xy
(x,y)=∫
a
b
f’
x
(x,y)∫
c
d
dx =∫
a
b
[f’
x
(x,d)一f’
x
(x,c)]dx =f(x,d)|
a
b
—f(x,c)|
a
b
=f(b,d)一f(a,d)+f(a,c)一f(b,c). 同理, [*]f"
yx
(x,y)dxdy=∫
c
d
dy∫
a
b
f"
yx
(x,y)dx=f(b,d)一f(a,d)+f(a,c)一f(b,c). 结论成立. (2)用反证法. 设存在P
0
(x
0
,y
0
)∈D,有f"
xy
(x
0
,y
0
)≠f"
yx
(x
0
,y
0
). 不妨设f"
xy
(x
0
,y
0
)一f"
yx
(x
0
,y
0
)>0,由于 [*][f"
xy
(x,y)一f"
yx
(x,y)]=f"
xy
(x
0
,y
0
)一f"
yx
(x
0
,y
0
)>0. 由极限的保号性,[*]ε
0
>0,δ>0,当P(x,y)∈U(P
0
,δ)时有 f"
xy
(x,y)一f"
yx
(x,y)>ε
0
. [*] 由(1)有,[*][f"
xy
(x,y)一f"
yx
(x,y)]dxdy=0,这与上述结论矛盾,故f"
xy
(x,y)与f"
yx
(x,y)在D上相等.
解析
转载请注明原文地址:https://kaotiyun.com/show/hmj4777K
0
考研数学二
相关试题推荐
求二元函数z=f(x,y)=x2y(4-x-y)在由x轴、y轴及x+y=6所围成的闭区域D上的最小值和最大值.
证明:当x≥0时,f(x)=∫0x(t-t2)sin2ntdt的最大值不超过
设f(x)为二阶可导的偶函数,f(0)=1,f"(0)=2且f"(x)在x=0的邻域内连续,则=_______
设f(x)=sinx,f[φ(x)]=1-x2,则φ(x)=_______,定义域为_______.
求微分方程(3x2+2xy一y2)dx+(x2一2xy)dy=0的通解.
设函数f(x)在0<x≤1时f(x)=xsinx,其他的x满足关系式f(x)+k=2f(x+1),试求常数k使极限存在.
求二重积分其中D是由曲线直线y=2,y=x所围成的平面区域.
行列式
已知3阶矩阵A和三维向量x,使得x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x.计算行列式|A+E|.
(2014年)行列式
随机试题
Theclassroomisquiteclean_____somewastepaperonthefloor.
会导致病理性高血糖的情况是
患者,男,16岁。发热4天伴纳差2天急诊。检查:血压114/70mmHg,左脚趾甲沟部红肿破溃。血白细胞计数为20×109/L,中性粒细胞为89%。左脚趾经切开引流处理后应给予
吸收给药总量的50%.~75%.不经过肝门静脉药物的pKa大于10
来自于期货市场之外,对期货市场的相关主体可能产生影响的风险是( )。
按照詹姆斯.拜伦和大卫.克雷普斯的分类,处理日常信件的办公室文员的工作属于()。
甲公司向乙宾馆发出一封电报称:现有一批电器,其中电视机80台,每台售价3400元;电冰箱100台,每台售价2800元,总销售优惠价52万元。如有意购买,请告知。乙宾馆接到该电报后,遂向甲公司回复称:只欲购买甲公司50台电视机,每台电视机付款3200元;60
广告:指为了商业目的,由商品经营者或服务提供者承担费用,通过一定媒介或一定形式,如通过报刊、电视、路牌、橱窗等,直接或间接地对自己推销的商品或所提供的服务所进行的公开的宣传活动。下列属于广告活动的是()。
接收者操作特性曲线(ROC)的横轴是()
Thinkgolfis【C1】______game?Thinkagain.ResearchersincludingDebbieCrewsofArizonaStateUniversityandJohnMiltonofthe
最新回复
(
0
)