首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设ξ1,ξ2,ξ3,ξ1+aξ2-2ξ3均是非齐次线性方程组Ax=b的解,则对应齐次线性方程组Ax=0有解 ( )
设ξ1,ξ2,ξ3,ξ1+aξ2-2ξ3均是非齐次线性方程组Ax=b的解,则对应齐次线性方程组Ax=0有解 ( )
admin
2018-07-23
46
问题
设ξ
1
,ξ
2
,ξ
3
,ξ
1
+aξ
2
-2ξ
3
均是非齐次线性方程组Ax=b的解,则对应齐次线性方程组Ax=0有解 ( )
选项
A、η
1
=2ξ
1
+aξ
2
+ξ
3
.
B、η
2
=-2ξ
1
+3ξ
2
-2aξ
3
.
C、η
3
=aξ
1
+2ξ
2
-ξ
3
.
D、η
4
=3ξ
1
-2aξ
2
+ξ
3
.
答案
D
解析
由题设条件Aξ
i
=b,i=1,2,3及A(ξ
1
+aξ
2
-2ξ
3
)=b+ab-2b=b,得(1+a-2)b=b,b≠0,即1+a-2=1,故a=2.
当a=2时,看是否满足Aη
i
=0,i=1,2,3,4.
Aη
1
= A(2ξ
1
+2ξ
2
+ξ
3
)=5b≠0,
Aη
2
= A(-2ξ
1
+3ξ
2
-4ξ
3
)=-3b≠0,
Aη
3
= A(2ξ
1
+2ξ
2
-ξ
3
)=3b≠0,
Aη
4
= A(3ξ
1
-4ξ
2
+ξ
3
)=0.
故η
4
是对应齐次方程组Ax=0的解,故应选D.
转载请注明原文地址:https://kaotiyun.com/show/hoj4777K
0
考研数学二
相关试题推荐
设其中E是n阶单位阵,α=[a1,a2,…,an]T≠0.计算A2,并求A-1;
设A为3阶矩阵,a1,a2为A的分别属于特征值-1、1的特征向量,向量a3满足Aa3=a2+a3,(Ⅰ)证明a1,a2,a3线性无关;(Ⅱ)令P=(a1,a2,a3,求P-1AP.
一子弹穿透某铁板,已知入射子弹的速度为v0,穿出铁板时的速度为v1,以子弹入射铁板时为起始时间,又知穿透铁板的时间为t1.子弹在铁板内的阻力与速度平方成正比,比例系数k>0.求子弹在铁板内的运动速度v与时间t的函数关系v=u(t);
(2006年试题.三(17))设区域D={(x,y)|x2+y2≤1,x≥0},计算二重积分
设α,β为四维非零的正交向量,且A=αβT,则A的线性无关的特征向量个数为().
设f(x)在区间[一a,a](a>0)上具有二阶连续导数,f(0)=0.(1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式;(2)证明:在[一a,a]上存在η,使a3f"(η)=3∫-aaf(x)dx.
求极限:
求二阶常系数线性微分方程y"+λy’=2x+1的通解,其中λ为常数.
设A是m×n阶矩阵,则下列命题正确的是().
设则d2y/dx2=_______。
随机试题
社会工作者通过书信的形式与即将假释出狱的服务对象建立联系,这在司法矫正的过程中属于()。
男性,25岁,双上肢烫伤,急诊入院。其烧伤面积为
治疗盗汗阴虚火旺证的主方是
女性,28岁。近一月以来,口腔溃疡反复发作,心烦,夜晚难以入睡,大便干。1~2日一行。口干不喜饮,小便黄,舌质红,苔腻,脉数。熟大黄的性状鉴别特征是()。
在监理规划的( )内容中应当包含有关监理资料管理和报告制度等内容。
有下列情形之一的证券公司不得申请注册登记为保荐机构()
关于技术转移与技术扩散、技术转让、技术引进之间关系的说法,正确的有()。
某用户是一个垂直管理的机构,需要建设一个视频会议系统,基本需求是:一个中心会场,18个一级分会场,每个一级分会场下面有3~8个二级分会场,所有通信线路为4Mbps,主会场、一级分会场为高清设备,可在管辖范围内自由组织各种规模的会议,也可在同级之间协商后组织
在结构化分析方法中,依据______来进行接口设计。
Thegeographicallocationofacountryanditsphysical【C1】______areveryimportanttoitsdevelopmentand【C2】______.TheUnit
最新回复
(
0
)