首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=2x12+2x22+2x32+2ax1x2+2ax1x3+2ax2x3,a为正整数。 (1)若f(x1,x2,x3)是正定二次型,求a的值; (2)求正交变换x=Qy,使二次型f(x1,x2,x3)化为标准形
设二次型f(x1,x2,x3)=2x12+2x22+2x32+2ax1x2+2ax1x3+2ax2x3,a为正整数。 (1)若f(x1,x2,x3)是正定二次型,求a的值; (2)求正交变换x=Qy,使二次型f(x1,x2,x3)化为标准形
admin
2021-04-16
137
问题
设二次型f(x
1
,x
2
,x
3
)=2x
1
2
+2x
2
2
+2x
3
2
+2ax
1
x
2
+2ax
1
x
3
+2ax
2
x
3
,a为正整数。
(1)若f(x
1
,x
2
,x
3
)是正定二次型,求a的值;
(2)求正交变换x=Qy,使二次型f(x
1
,x
2
,x
3
)化为标准形,并写出Q。
选项
答案
(1)f(x
1
,x
2
,x
3
)的二次型矩阵为A=[*],故由|λE-A|=[*]=(λ-2-2a)(λ-2+a)
2
=0,有A的特征值为λ
1
=2+2a,λ
2
=λ
3
=2-a,由A正定,有2+2a>0,2-a>0,即-1<a<2,又a为正整数,故a=1。 (2)由(1),λ
1
=4,λ
2
=λ
3
=1。 当λ
1
=4时,[*] 得基础解系为γ
1
=(1,1,1)
T
,当λ
2
=λ
3
=1时,[*] 得基础解系为ξ
1
=(-1,1,0)
T
,ξ
2
=(-1,0,1)
T
。 将ξ
1
,ξ
2
正交化,取γ
1
=ξ
1
=(-1,1,0)
T
,γ
2
=ξ
2
-(ξ
2
,γ
2
)γ
2
/(γ
2
,γ
2
) =(-1,0,1)
T
-(1/2)(-1,1,0)
T
=(-1/2,-1/2,1)
T
。 再将γ
1
,γ
2
,γ
3
单位化: [*] 令Q=(η
1
,η
2
,η
3
)=[*],则在x=Qy下化为4y
1
2
+y
2
2
+y
3
2
。
解析
转载请注明原文地址:https://kaotiyun.com/show/hpx4777K
0
考研数学三
相关试题推荐
设A=,B为三阶非零矩阵,为BX=0的解向量,且AX=a3有解.(Ⅰ)求常数a,b的值;(Ⅱ)求BX=0的通解.
设数列{an}单调增加且有上界,θ为常数,则级数(an一an+1)sinnθ()
设矩阵A是秩为2的4阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且α1+α2一α3=(2,0,一5,4)T,α2+2α3=(3,12,3,3)T,α3—2α1=(2,4,1,一2)T,则方程组Ax=b的通解x=
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且=0,又f(2)=2f(x)dx,证明:存在ξ∈(0,2),使得f’(ξ)+f"(ξ)=0。
设α=(1,1,一1)T是A=的一个特征向量.(Ⅰ)确定参数a,b的值及特征向量α所对应的特征值;(Ⅱ)问A是否可以对角化?说明理由.
下列矩阵中两两相似的是
设幂级数在x=6处条件收敛,则幂级数的收敛半径为()
在反常积分中收敛的是
设二次型f(x1,x2,x3)=xTAx的秩为2,且矩阵A满足A2+A=0,则与A相似的矩阵是
随机试题
药物按零级动力学消除的特点是()
案情:杨超于2005年8月4日到彭州市妇幼保健院进行产前检查,并于次日在彭州市妇幼保健院建立孕产妇卡。彭州市妇幼保健院为杨超进行了孕产期常规体检和保健检查。同日超声检查结果为:各项检查结果均为正常。彭州市妇幼保健院按规定对杨超进行了孕产期保健提示和保健医学
根据我国现行居住区规范,在计算人均居住区用地指标时,每户平均人数(人/户)为下列何值?
根据《中华人民共和国城乡规划法》的有关规定,下列选项中,不属于现行的城市规划实施管理手段的是()。
索赔有较广泛的含义,但可以概括为()。
取得融资融券业务试点资格的证券公司在开展融资融券业务前还应向交易所申请融资融券交易权限。()
该酒厂本年度应纳税所得额( )万元。年度企业所得税汇算清缴时,应补缴企业所得税( )万元。
从教育有史以来,除()之外教育都是具有阶级性的特征。
非空的循环单链表head的尾结点(由p所指向),满足()
IstheInternetMakingUsForgetful?AtouristtakesapictureoftheEmpireStateBuildingonhisiPhone,deletesit,then
最新回复
(
0
)