首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知 Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. (1)证明:Aα1,Aα2,Aα3线性无关;(2)求|A|.
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知 Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. (1)证明:Aα1,Aα2,Aα3线性无关;(2)求|A|.
admin
2019-01-13
46
问题
设A是3×3矩阵,α
1
,α
2
,α
3
是三维列向量,且线性无关,已知
Aα
1
=α
2
+α
3
,Aα
2
=α
1
+α
3
,Aα
3
=α
1
+α
2
.
(1)证明:Aα
1
,Aα
2
,Aα
3
线性无关;(2)求|A|.
选项
答案
(1)[Aα
1
,Aα
2
,Aα
3
]=[α
2
+α
3
,α
1
+α
3
,α
1
+α
2
]=[α
1
,α
2
,α
3
][*]=2≠0,C是可逆阵. (2)[Aα
1
,Aα
2
,Aα
3
]=A[α
1
,α
2
,α
3
]=[α
1
,α
2
,α
3
][*] 两边取行列式,得|A|=[*]=2.
解析
转载请注明原文地址:https://kaotiyun.com/show/hyj4777K
0
考研数学二
相关试题推荐
(2013年)设奇函数f(χ)在[-1,1]上具有2阶导数,且f(1)=1.证明:(Ⅰ)存在ξ∈(0,1),使得f′(ξ)=1;(Ⅱ)存在η∈(-1,1),使得f〞(η)+f′(η)=1.
(1996年)设f(χ)有连续导数,f(0)=0,f′(0)≠0,F(χ)=∫0χ(χ2-t2)f(t)dt,且当χ→0时,F′(χ)与χk是同阶无穷小,则k等于
(2003年)若χ→0时,-1与χsinχ是等价无穷小,则a=_______.
设函数f(x)=(x>0),证明:存在常数A,B,使得当x→0+时,恒有f(x)=e+Ax+Bx2+0(x2),并求常数A,B.
求极限:.
求函数f(x,y)=x2+2y2一x2y2在区域D={(x,y)|x2+y2≤4,y≥0)上的最大值与最小值.
求y"一y=e|x|的通解.
设二次型f(χ1,χ2,χ3)=XTAX,已知r(A)=2,并且A满足A2-2A=0.则下列各标准二次型中可用正交变换化为厂的是().(1)2y12+2y22(2)2y12.(3)2y12+2y32(4)2y
用Schmidt正交化方法将下列向量组规范正交化:α1=(1,1,1)T,α2=(-1,0,-1)T,α3=(-1,2,3)T.
一质点从时间t=0开始直线运动,移动了单位距离使用了单位时间,且初速度和末速度都为零.证明:在运动过程中存在某个时刻点,其加速度绝对值不小于4.
随机试题
违法行为情节显著轻微或者没有明显社会危害的,可以不采取行政强制措施。
为组合业绩提供一种“既考虑收益高低又考虑风险大小”的评估理论依据的是()。
下面的词中属于古语词的是
受振动或高速荷载作用的结构用钢,应特别注意选用()。
判别一项成本是否是可控成本,应该满足的条件有()。
甲公司和乙公司均为增值税—般纳税人,适用的增值税税率均为17%。有关债务重组和资产置换业务如下。(1)2011年2月1日。乙公司销售—批商品给甲公司,购货款及税款合计700万元。8月1日款项到期,由于甲公司发生财务困难,不能按合同规定支付货款,2011年
一1,3,一3,6,一9,12,()
(2005年国考)长期以来,在传统观念的影响下,对于司法机关在执法过程中侵害公民、法人和其他组织的合法权益的行为,缺乏有效可行的保障机制来恢复和弥补被侵权人的权利。这段文字的主旨是()。
ParentsintheirfortieswanttheirchildrentogetthebesteducationbecauseIntheparents’view,entrytoagooduniversity
WhatdoesthemanneedtodobeforetakingthecourseinPoetsofthe1960’s?
最新回复
(
0
)