首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αα5均为n维列向量,A为m×n矩阵,下列选项正确的是( ).
设α1,α2,…,αα5均为n维列向量,A为m×n矩阵,下列选项正确的是( ).
admin
2020-06-05
28
问题
设α
1
,α
2
,…,αα
5
均为n维列向量,A为m×n矩阵,下列选项正确的是( ).
选项
A、若α
1
,α
2
,…,α
5
线性相关,则Aα
1
,Aα
2
,…,Aα
5
线性相关
B、若α
1
,α
2
,…,α
5
线性相关,则Aα
1
,Aα
2
,…,Aα
5
线性无关
C、若α
1
,α
2
,…,α
5
线性无关,则Aα
1
,Aα
2
,…,Aα
5
线性相关
D、若α
1
,α
2
,…,α
5
线性无关,则Aα
1
,Aα
2
,…,Aα
5
线性无关
答案
A
解析
方法一
因为(Aα
1
,Aα
2
,…,Aα
s
)=A(α
1
,α
2
,…,α
s
),记为C=AB,由矩阵秩的性质
R(C)=R(AB)≤min{R(A),R(B)}
所以,若R(B)﹤s,则必有R(C)﹤s.也就是说若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
线性相关.
方法二
取A=0,则选项(B),(D)不成立;若取A=E,则选项(C)不成立.
方法三
因为α
1
,α
2
,…,α
s
线性相关,所以存在一组不全为零的数k
1
,k
2
,…,k
s
,使得
k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0
从而 A(k
1
α
1
+k
2
α
2
+…+k
s
α
s
)=0
即 k
1
(Aα
1
)+k
2
(Aα
2
)+…+k
s
(Aα
s
)=0
由此存在一组不全为零的数k
1
,k
2
,…,k
s
使得上式成立,所以Aα
1
,Aα
2
,…,Aα
s
线性相关.
转载请注明原文地址:https://kaotiyun.com/show/i8v4777K
0
考研数学一
相关试题推荐
设x→0时,(1+sinx)x一1是比xtanxn低阶的无穷小,而xtanxn是比(一1)ln(1+x2)低阶的无穷小,则正整数n等于()
设A是n阶矩阵,则||A*|A|=
设A,B,C三个事件两两独立,则A,B,C相互独立的充分必要条件是()
设A为3阶矩阵,将A的第2行加到第1行得B,再将B的第1列的-1倍加到第2列得C,记则
设有任意两个n维向量组α1,…,αm和β1,…,βm,若存在两组不全为零的λ1,…,λm和k1,k2,…,km,使(λ1+k1)α1+…+(λm+km)αm+(λ1-k1)β1+…+(λm-km)βm=0,则()
设L:过L上一点作切线,求切线与L及坐标轴所围成面积的最小值.
设四阶方阵A﹦(α,γ2,γ3,γ4),JB﹦(β,γ2,γ3,γ4),其中α,β,γ2,γ3,γ4均为四维列向量,且|A|﹦2,|B|﹦1,则|A-4B|﹦______。
设三阶方阵A=[A1,A2,A3],其中Ai(i=1,2,3)为三维列向量,且A的行列式|A|=一2,则行列式|—A1—2A2,2A2+3A3,一3A3+2A1|=___________.
已知随机变量X的概率密度为f(χ)=Aeχ(B-χ)(-∞<χ<+∞),且有EX=2DX,试求:(Ⅰ)常数A,B的值;(Ⅱ)E(X2+eχ);(Ⅲ)Y=的分布函数F(y).
设A=(α1,α2,α3,α4)为4阶方阵,且AX=0的通解为X=k(1,1,2,一3)T,则α2由α1,α3,α4表示的表达式为_________.
随机试题
在病例对照研究中,变量的的测量应尽可能的采用
下列关于牙颌面畸形的叙述哪项是错误的()
下图为深圳万科城市花园住宅组团,其设计采用的布置方法是:
机构如图,杆ED的点H由水平绳拉住,其上的销钉C置于杆AB的光滑直槽中,各杆重均不计。已知FP=10kN。销钉C处约束力的作用线与x轴正向所成的夹角为()。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
莎士比亚戏剧中体现的很多观点、态度和思想——莎士比亚本人是否赞同有待探究,但放在今天无论如何是难以接受的。其中确有赤裸裸的政治不正确之处,弄得一些改编作品简直就像在讨伐莎士比亚。不过,这些貌似不敬的行为反倒是帮了莎士比亚的大忙。因为这些莎士比亚原作的衍生作
决策支持系统通过它的输出接口产生报告、数据库查询结果和模型的模拟结果,这些结果又提供了对决策过程中哪项的支持?
在美国国防部的可信任计算机标准评估准则中,安全等级最高的是()。
下列关于IPS的描述中,正确的是()。
Wehavetoaskthemtoquittalkinginorderthatallpeoplepresentcouldhearusclearly.
最新回复
(
0
)