首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
设F(x)=f(x)g(x),其中函数f(x),g(x)在(一∞,+∞)内满足以下条件: f(x)=g(x),g’(x)=f(x),且f(0)=0,f(x)+g(x)=2ex。 (1)求F(f)所满足的一阶微分方程; (2)求出F(f)的表达式。
设F(x)=f(x)g(x),其中函数f(x),g(x)在(一∞,+∞)内满足以下条件: f(x)=g(x),g’(x)=f(x),且f(0)=0,f(x)+g(x)=2ex。 (1)求F(f)所满足的一阶微分方程; (2)求出F(f)的表达式。
admin
2015-04-21
94
问题
设F(x)=f(x)g(x),其中函数f(x),g(x)在(一∞,+∞)内满足以下条件:
f(x)=g(x),g’(x)=f(x),且f(0)=0,f(x)+g(x)=2e
x
。
(1)求F(f)所满足的一阶微分方程;
(2)求出F(f)的表达式。
选项
答案
题目要求F(x)所满足的微分方程,而微分方程中含有其导函数,自然想到对F(x)求导,并将其余部分转化为用F(x)表示,导出相应的微分方程,然后再求解相应的微分方程即可。 (1)由F(x)=f(x)g(x),有 P(x)=f’(x)g(x)+f(x)+f(x)=g
2
(x)f
2
(x) =[f(x)g(x)]
2
—2f(x)g(x)=(2e
2
)
2
—F(x) 可见F(x)所满足的一阶微分方程为 F’(x)+2F(x)=4e
2x
相应的初始条件为F(0)=f(0)g(0)=0(2)由题(1)得到F(x)所满足的一阶微分方程,求F(x)的表达式只需解一阶微分方程.又一阶线性非齐次微分方程[*]+p(x)Y=Q(x)的通解为 y=e
—∫p(x)dx
(∫Q(x)e
p(x)dx
+C) 所以:F(x)=e
—∫2dx
[∫4e
2x
.e
2dx
dx+C]=e
—2x
[∫4e
4x
dx+C]=e
2x
+Ce
—2x
将F(0)代入上式,得C=—1 所以F(x)=e
2x
—e
—2x
解析
转载请注明原文地址:https://kaotiyun.com/show/iItv777K
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
谋求世界各国经济共同发展的根本途径是()。
马克思根据人的发展状况把人类历史划分为依次更替的三种社会形态,分别是()。
简述教育立法的原则。
人民教育出版社普通高中课程标准实验教科书《思想政治》必修4第六课《求索真理的历程》的第一框《人的认识从何而来》一共包括以下两个小标题:(1)实践及其特点(2)实践是认识的基础请以此为内容进行一个简单的教学设计,包括设计理念、教材分析、学情分析
导入的作用在于集中学生的注意力,引起学生的兴趣,明确学习目的、要求,为学好新知识创造良好的前提。导入的设计必须具有合理的结构,典型的导入由()构成。①集中注意②引起兴趣③明确目的④进入课题
下图是某商品的需求曲线(P表示商品价格,Q表示商品需求量)。据图,一般来说,商品生产者应该()。
英国教育部宣布,在全英8000所小学推广采用中国数学教学方法,积极推进课程教学改革。这表明()。
已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N*。(1)证明:{an-1}是等比数列;(2)求数列{Sn}的通项公式,并求出n为何值时,Sn取得最小值,并说明理由。
随机试题
杨绛(1911一),女,生于北京,原籍江苏无锡。曾翻译世界名著______、______等。代表作有散文______、______,长篇小说______等。
抗精神病药引起的严重的不良反应有()
患者女,39岁。因“右侧咽喉部疼痛4个月”就诊。查体:右侧扁桃体区可见外生型新生物,右下颌下可及一质硬固定的1.5cm×2cm大小包块,无压痛。经新生物活检确诊为扁桃体未分化癌。头颈部MR.I提示右扁桃体区可见3cm×3cm肿块局限于右侧扁桃体窝,右上颈可
一奶牛发情配种4个月后,直肠检查子宫未有妊娠变化,左侧卵巢有一充满液体、突出于卵巢表面的结构;母牛一直未有发情表现,但荐坐韧带松弛。则该病是
房地产经纪机构风险管理的第一步是()。
发包人与承包人因建设工程质量发生争议,双方同意交仲裁机构仲裁。仲裁机构作出裁决书后,发包人不服仲裁裁决并向法院起诉,则法院应当()。
下列哪项是健康保险公估的主要业务形式?( )
纳税人因特殊情况不能按照税法规定的纳税期限缴纳税款的,可以申请延期缴纳税歉。下列各项中属于特殊情况的有()。
3,3,4,5,7,7,11,9,(),()
根据下列资料,回答问题。2016年年末,纳人统计范围的全国各类文化(文物)单位31.06万个,比上年年末增加1.15万个;从业人员234.81万人,同比增加2.34%。其中,各级文化文物部门所属单位66029个,增加319个;从业人员66.10万人。增加
最新回复
(
0
)