首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知X,Y为随机变量且P{X≥0,Y≥0}=,设A={max(X,Y)≥0},B={max(X,Y)<0,min(X,Y)<0},C={max(X,Y)≥0,min(X,Y)<0},则P(A)=_________,P(B)=_________,P(C)=_
已知X,Y为随机变量且P{X≥0,Y≥0}=,设A={max(X,Y)≥0},B={max(X,Y)<0,min(X,Y)<0},C={max(X,Y)≥0,min(X,Y)<0},则P(A)=_________,P(B)=_________,P(C)=_
admin
2017-03-29
29
问题
已知X,Y为随机变量且P{X≥0,Y≥0}=
,设A={max(X,Y)≥0},B={max(X,Y)<0,min(X,Y)<0},C={max(X,Y)≥0,min(X,Y)<0},则P(A)=_________,P(B)=_________,P(C)=_________.
选项
答案
[*] [*] [*]
解析
首先要分析事件的关系,用简单事件运算去表示复杂事件,而后应用概率性质计算概率.
由于A={max(X,Y)≥0}={X,Y至少有一个大于等于0}={X≥0}∪{Y≥0},故
P(A)=P{X≥0}+P{Y≥0}-P{X≥0,Y≥0}=
又{max(X,Y)<0}
{min(X,Y)<0},则
B={max(X,Y)<0,min(X,Y)<0}={max(X,Y)<0}=
.
从而P(B)=P
=1一P(A)=1一
由全集分解式知:A={max(X,Y)≥0}={max(X,Y)≥0,min(X,Y)<0}+{max(X,Y)≥0,min(X,Y)≥0}=C+{X≥0,Y≥0},故
P(C)=P(A)一P{X≥0,Y≥0}=
转载请注明原文地址:https://kaotiyun.com/show/iNu4777K
0
考研数学一
相关试题推荐
[*]
设随机变量X的绝对值不大于1,P(X=1)=1/4,P(X=-1)=1/8,而在事件{-1
已知某产品的边际成本和边际收益函数分别为Cˊ(q)=q2-4q+6,Rˊ(q)=105—2q,固定成本为100,其中q为销售量,C(q)为总成本,R(q)为总收益,求最大利润.
设y=y(x)是函数方程ex+y=2+x+2y在点(1,-1)所确定的隐函数,求y〞|(1,-1)和d2y.
设矩阵,矩阵B满足ABA*=2BA*+E,其中A*为A的伴随矩阵,E是单位矩阵,则丨B丨=__________.
一串钥匙,共有10把,其中有4把能打开门,因开门者忘记哪些能打开门,便逐把试开,求下列事件的概率:第3把钥匙才打开门
设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值g(1)=1.求.
设函数f(x)连续且恒大于零,其中Ω(t)={(x,y,z)丨x2+y2+z2≤t2},D(t)={(z,y)丨x2+y2≤t2}.讨论F(t)在区间(0,+∞)内的单调性;
设函数f(x)在(-∞,+∞)内具有一阶连续导数,L是上半平面(y>0)内的有向分段光滑曲线,其起点为(a,b),终点为(c,d),记当ab=cd时,求I的值.
已知(1)计算行列式|A|.(2)当实数α为何值时,方程组Ax=β有无穷多解,并求其通解.
随机试题
阅读作品片段,回答问题:不逢北国之秋,已将近十余年了。在南方每年到了秋天,总要想起陶然亭的芦花,钓鱼台的柳影,西山的虫唱,玉泉的夜月,潭柘寺的钟声。在北平即使不出门去罢,就是在皇城人海之中,租人家一椽破屋来住着,早晨起来,泡一碗浓茶,向院子一坐,
某男性怕影响夫妻关系,即使在多个朋友的怂恿下还是抵御住性诱惑,从健康信念模式角度看,是感知到疾病的
公路运输方式的特点有( )。
港航工程有抗冻性要求的混凝土,抗冻性合格的指标是在满足所要求的冻融循环次数后()。
将现金存入银行的业务,应根据()登记现金日记账的支出栏。
在做理财规划的六个步骤中,第一个步骤是建立和界定与客户关系。下列选项中,( )是这一步骤的内容。
根据《上海证券交易所上市公司股东及董事、监事、高级管理人员减持股份实施细则》,下列说法正确的有()。[2017年6月真题]Ⅰ.上市公司涉嫌证券期货违法犯罪被立案调查期间,大股东不得减持股份Ⅱ.董监高被上交所公开谴责后3个月内不得减持
好的制度能把人良性的方面发挥出来,坏的制度能把好人变成坏人。对此,你怎么看?
现代密码体制使用的基本方法仍然是替换和(52)。
Worriedaboutprescriptiondrugs?Howtoweighyourrisk?[A]WhenthepainrelieverVioxxwaswithdrawnfromtheworldwidemark
最新回复
(
0
)