首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明: (I)存在η∈(a,b),使得f(η)=g(η); (Ⅱ)存在ξ∈(a,b),使得f〞(ξ)=g〞(ξ).
设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明: (I)存在η∈(a,b),使得f(η)=g(η); (Ⅱ)存在ξ∈(a,b),使得f〞(ξ)=g〞(ξ).
admin
2012-06-04
108
问题
设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:
(I)存在η∈(a,b),使得f(η)=g(η);
(Ⅱ)存在ξ∈(a,b),使得f〞(ξ)=g〞(ξ).
选项
答案
(I)设f(x),g(x)在(a,b)内某点c∈(a,b)同时取得最大值,则f(c)=g(c),此时的c就是所求点η,使得f(η)=g(η), 若两个函数取得最大值的点不同,则可设f(c)=maxf(x),g(d)=maxg(x), 故有f(c)-g(c)>0,f(d)-g(d)<0, 由介值定理,在(c,d)内(或(d,c)内)肯定存在η,使得f(η)=g(η). (Ⅱ)由罗尔定理在区间(a,η)、(η,b)内分别存在一点ξ
1
,ξ
2
, 使得fˊ(ξ
1
)=gˊ(ξ
1
),fˊ(ξ
2
)=gˊ(ξ
2
).在区间(ξ
1
,ξ
2
)内再用罗尔定理, 即存在ξ∈(a,b),使得f〞(ξ)=g〞(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/D254777K
0
考研数学一
相关试题推荐
(2005年)已知函数χ=f(χ,y)的全微分dχ=2χdχ-2ydy,并且f(1,1)=2.求f(χ,y)在椭圆域D={(χ,y)|χ2+≤1}上的最大值和最小值.
(93年)设F(x)=(x>0),则函数F(x)的单调减少区间是______.
曲线在(0,0)处的切线方程为_______。
排列12…n可经________次对换变为排列n…21.
[2009年]若二阶常系数线性齐次微分方程y"+ay′+by=0的通解为y=(C1+C2x)ex,则非齐次方程y"+ay′+by=x满足条件y(0)=2,y′(0)=0的解y=_______.
设函数f(x,y)具有一阶连续偏导数,且af(x,y)=yeydx+x(1+y)eydy,f(0,0)=0,则f(x,y)=_______.
(2010年)3阶常系数线性齐次微分方程-2y〞+y′-2y=0的通解为y=________.
矩阵相似的充分必要条件为
设A,B为n阶矩阵,记r(X)为矩阵X的秩,(X,Y)表示分块矩阵,则()
(2005年)设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是【】
随机试题
幼儿科学教育过程是幼儿主动探究的过程。()
作口腔真菌培养时,采取分泌物的部位宜在
在下列选项中,()不应列入建筑安装工程费用中。
制定中华人民共和国合伙企业法的目的有()。
《中华人民共和国招标投标法实施条例》规定,投标人对资格预审文件、招标文件、开标以及对依法必须进行招标的项目投诉的,应当依法先向()提出异议。
装箱单是用以说明货物包装细节的清单,又称为()。
按内在属性分类,主要包括按客户的()进行分类。
《物权法》规定,除法律另有规定外,()代表国家行使国有财产的所有权。
模块本身的内聚是模块独立性的重要性度量因素之—。在7类内聚中,具有最强内聚的—项是______。
AdvantagesofPublicTransportA)AnewstudyconductedfortheWorldBankbyMurdochUniversity’sInstituteforScienceandTec
最新回复
(
0
)