首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
f(x)在(一∞,+∞)上连续,且f(x)的最小值f(x0)<x0,证明:f[f(x)]至少在两点处取得最小值.
f(x)在(一∞,+∞)上连续,且f(x)的最小值f(x0)<x0,证明:f[f(x)]至少在两点处取得最小值.
admin
2018-08-22
104
问题
f(x)在(一∞,+∞)上连续,
且f(x)的最小值f(x
0
)<x
0
,证明:f[f(x)]至少在两点处取得最小值.
选项
答案
令F(x)=f(x)一x
0
,则F(x)在(一∞,+∞)上连续,且 [*] 由[*]知存在a<x
0
,使得F(a)>0;存在b>x
0
,使得F(b)>0,于是由零点定理知存在x
1
∈(a,x
0
),使得F(x
1
)=0;存在x
2
∈(x
0
,b),使得F(x
2
)=0,即有x
1
<x
0
<x
2
,使得f(x
1
)=x
0
=f(x
2
),从而得f[f(x
1
)]=f(x
0
)=f[f(x
2
)],即f[f(x)]至少在两点处取得最小值.
解析
转载请注明原文地址:https://kaotiyun.com/show/iWj4777K
0
考研数学二
相关试题推荐
f(x)在(一∞,+∞)上连续,=+∞,且f(x)的最小值f(x0)<x0,证明:f(f(x))至少在两点处取得最小值.
设有3阶实对称矩阵A满足A3-6A2+11A一6E=0,且|A|=6.判断二次型f=xT(A+E)x的正定性.
设f(x)在[0,+∞)上连续且单调增加,试证对任何b>a>0,都有下面不等式成立:
设函数f(x)在[0,1]上非负连续,且f(0)=f(1)=0,证明对实数a(0<a<1),必有ξ∈[0,1)使f(ξ+a)=f(ξ).
设y=f(x)在(-1,1)内具有二阶连续导数,且f"(x)≠0,试证:(1)对(-1,1)内的任一x≠0,存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立;(2)
设二维随机变量(X,Y)的分布函数为F(x,y)=,则常数A和B的值依次为()
设封闭曲线L的极坐标方程为,则L所围平面图形的面积是___________.
设D是由曲线,直线x=a(a>0)及x轴所围成的平面图形,Vx,Vy分别是D绕x轴,y轴旋转一周所得旋转体的体积,若Vy=10Vx,求a的值.
(2010年)(Ⅰ)比较∫01|lnt|[ln(1+t)]ndt与∫01tn|lnt|dt(n=1,2,…)的大小,说明理由;(Ⅱ)记un=∫01|lnt|[ln(1+t)]ndt(n=1,2,…),求极限un.
计算积分:设求
随机试题
关于壁式框架,下列说法不正确的是
下列关于肘关节的叙述,正确的是()
下列关于费用效益分析的内容、具体步骤等方面的叙述,表达不正确的有()。
【背景资料】某公司在某省某城市承包了一个油库改造项目。项目包括新增5个2600m3储油罐,对原有部分输油管道进行改造。整个改造工程4月1日开工,工期120天。中间只允许罐区日常工作停工5天,从而完成管线的连接。新建储油罐与原轻质储油罐的最近距离8m;储
契税是()。
下列各项中,属于不得收购上市公司股份的情形是()。
以下()属于影响人际吸引的主要因素。
认知治疗中使用行为技术是为了()。
为了开展扶贫工作。政府免费发果树苗给群众。种植一段时间之后。群众反映树苗的成活率极低。树苗存在严重的质量问题。经检验。群众反映的问题属实。这件事由你负责。请问你怎么办?
Thoughnotbiologicallyrelated,friendsareas"related"asfourthcousins,sharingabout1%ofgenes.Thatis【B1】______1astu
最新回复
(
0
)