首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
f(x)在(一∞,+∞)上连续,且f(x)的最小值f(x0)<x0,证明:f[f(x)]至少在两点处取得最小值.
f(x)在(一∞,+∞)上连续,且f(x)的最小值f(x0)<x0,证明:f[f(x)]至少在两点处取得最小值.
admin
2018-08-22
48
问题
f(x)在(一∞,+∞)上连续,
且f(x)的最小值f(x
0
)<x
0
,证明:f[f(x)]至少在两点处取得最小值.
选项
答案
令F(x)=f(x)一x
0
,则F(x)在(一∞,+∞)上连续,且 [*] 由[*]知存在a<x
0
,使得F(a)>0;存在b>x
0
,使得F(b)>0,于是由零点定理知存在x
1
∈(a,x
0
),使得F(x
1
)=0;存在x
2
∈(x
0
,b),使得F(x
2
)=0,即有x
1
<x
0
<x
2
,使得f(x
1
)=x
0
=f(x
2
),从而得f[f(x
1
)]=f(x
0
)=f[f(x
2
)],即f[f(x)]至少在两点处取得最小值.
解析
转载请注明原文地址:https://kaotiyun.com/show/iWj4777K
0
考研数学二
相关试题推荐
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22.
设有n元二次型f(x1,x2,……xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn+anx1)2,其中ai(i=1,2,…,n)为实数.试问当a1,a2,…,an满足何种条件时,二次型f(x1,x2,……xn)为正定二次型.
设函数f(x)在区间[0,+∞)上连续且单调增加,证明g(x)=在[0,+∞)上也单调增加.
设函数y(x)具有二阶导数,且曲线l:y=y(x)与直线y=x相切于原点,记α为曲线l在点(x,y)处切线的倾角,若,求y(x)的表达式.
已知函数(1)求a的值;(2)若x→0时f(x)一a与xk是同阶无穷小,求常数k的值.
已知y1=e3x一xe2x,y2=ex一xe2x,y3=一xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解为y=_____________.
已知函数z=f(x,y)的全微分dz=2xdx一2ydy,并且f(1,1)=2.求f(x,y)在椭圆域上的最大值和最小值.
高为l的柱体形贮油罐,底面是长轴为2a,短轴为2b的椭圆现将贮油罐平放,当油罐中油面被时(如图3—6),计算油的质量.(长度单位为m,质量单位为kg,油的皴为常数ρkg/m3)
过点P(0,-)作抛物线y=]的切线,该切线与抛物线及x轴围成的平面区域为D,求该区域分别绕x轴和y轴旋转而成的体积.
设函数f(x)在(一∞,+∞)内单调有界,{xn}为数列,下列命题正确的是()
随机试题
试述国际商务谈判中“答”的技巧。
细菌性肝脓肿最常见的早期症状是
[2010年第107题]哪一类埋地的金属构件可作为接地极?
如图所示,杆受集度为P的均布荷载作用,则杆的变形为()。
与邀请招标相比,公开招标的最大优点是()。
下列属于水利工程质量事故报告主要内容的是()。
小波很贪玩,经常不完成作业。一天,他又没做作业,班主任张老师很生气,放学后让他单独在教室里补作业。这时,张老师突然想起家里有事要办,看见小波还没有补完作业,就说:“补完作业才能回家,我一会儿回来检查。”为防止小波偷偷跑了,临走时张老师把教室的门上了锁。张老
有人说,不管你眼下的境况多么不济,比如薪水微薄,面临失业等,只要银行里还有一笔储蓄就不足为虑,而假如你挣一文花一文,这时可就真要陷于绝境了,所以,只有储蓄才能使一个人在经济上真正独立起来。如果有人反对这一言论,则以下可能不是反对者观点的是:
下列客体中,不能作为物权客体的是()。
Платье,____тыбылавчеранавечеретанцев,оченькрасиво.Гдетыегокупила?
最新回复
(
0
)