首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,1]上非负连续,且f(0)=f(1)=0,证明对实数a(0<a<1),必有ξ∈[0,1)使f(ξ+a)=f(ξ).
设函数f(x)在[0,1]上非负连续,且f(0)=f(1)=0,证明对实数a(0<a<1),必有ξ∈[0,1)使f(ξ+a)=f(ξ).
admin
2016-01-11
85
问题
设函数f(x)在[0,1]上非负连续,且f(0)=f(1)=0,证明对实数a(0<a<1),必有ξ∈[0,1)使f(ξ+a)=f(ξ).
选项
答案
令F(x)=f(x+a)-f(x).因为f(x)在[0,1]上非负连续,f(x+a)应在[一a,1一a]上非负连续,于是F(x)在[0,1—a]上连续. 由于 F(0)=f(a)-f(0)=f(a)≥0, F(1一a)=f(1)-f(1一a)=-f(1一a)≤0. (1)若F(0)=0,则ξ=0即为所求; (2)若F(1一a)=0, 则ξ=1—a即为所求; (3)若F(0)≠0且F(1-a)≠0,则由零点定理,必存在ξ∈(0,1一a)[*](0,1),使得F(ξ)=0,即f(ξ+a)=f(ξ). 综上所述,存在ξ∈[0,1),使f(ξ+a)=f(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/7q34777K
0
考研数学二
相关试题推荐
设f(x)为不恒等于零的奇函数,Rf’(0)存在,则函数g(x)=().
已知α1,α2,α3是四元非齐次线性方程组AX=b的3个解,其中2α1一α2=[0,2,2,2]T,α1+α2+α3=[4,一1,2,3]T,2α2+α3=[5,一1,0,1]T,秩(A)=2,那么方程组AX=b的通解是__________.
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(Ⅰ)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;(Ⅱ)设,求出可由两组向量同时表示的向量.
微分方程(x+y)dy+(y+1)dx=0满足y(1)=2的特解是y=___________.
设不恒为零的函数f(x)在[0,1]上有二阶连续导数,且f(0)=f(1)=0.记M={|f(x)|)}.证明:至少存在一点ξ∈(0,1),使得|f’(ξ)|≥2M;
曲线x2-xy+y2=3上的点到原点的最大距离为()
设函数y=y(x)由方程组所确定,试求t=0
曲面z=13-x2-y2将球面x2+y2+z2=25分成三部分,试求这三部分曲面的面积之比.
设向量r=x2zi+xy2j+yz2k,试求散度divr在点P(2,2,1)处:(1)沿曲面x2+y2+z2=9外法线方向的方向导数;(2)最大变化率.
随机试题
现场干预试验必须具备哪些基本要素
蟾酥的性状特征有()
控释膜保护膜
“应收票据”项目应根据“应收票据”科目的期末余额填列。()
以下不属于个别督导的技巧是()。
试论缔约过失责任。
吉尼斯世界纪录和趣味有关,也和无聊有关。27个法国人用牙签搭建了微型的埃菲尔铁塔,一个美国人收集了600余双匡威运动鞋,一个古巴人做出了世界上最长的雪茄。吉尼斯就是无聊大观园,没有想不到,也不存在做不到。但太无聊的纪录连吉尼斯也会望而生畏,有人注册了互联网
材料1建设社会主义现代化国家、实现中华民族伟大复兴,是我们党孜孜以求的宏伟目标。自成立以来,我们党就团结带领人民为此进行不懈奋斗。随着改革开放逐步深化,我们党对制度建设的认识越来越深入。1980年,邓小平同志在总结“文化大革命”的教训时就指出:“
办事员小李需要整理一份有关高新技术企业的政策文件呈送给总经理查阅。参照“示例1.jpg”“示例2.jpg”,利用考生文件夹下提供的相关素材,按下列要求帮助小李完成文档的编排:在标题段落“附件1:国家重点支持的高新技术领域”的下方插入以图标方式显示的文档
【B1】【B12】
最新回复
(
0
)