首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)在(-1,1)内具有二阶连续导数,且f"(x)≠0,试证: (1)对(-1,1)内的任一x≠0,存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立; (2)
设y=f(x)在(-1,1)内具有二阶连续导数,且f"(x)≠0,试证: (1)对(-1,1)内的任一x≠0,存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立; (2)
admin
2016-01-11
52
问题
设y=f(x)在(-1,1)内具有二阶连续导数,且f"(x)≠0,试证:
(1)对(-1,1)内的任一x≠0,存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立;
(2)
选项
答案
(1)对(一1,1)内任一x≠0,由拉格朗日中值定理知,[*](x)∈(0,1),使 f(x)=f(0)+xf’(θ(x)x). 因为f”(x)在(一1,1)内连续且f”(x)≠0,所以f”(x)在(一1,1)内不变号,即f’(x)单调,故θ(x)是唯一的. (2)再由泰勒公式知,存在介于0与x之间的ξ,使 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/2l34777K
0
考研数学二
相关试题推荐
设函数f(x)在区间[0,4]上连续,且=0,求证:存在ξε(0,4)使得f(ξ)+f(4-ξ)=0。
函数y=在区间[0,2]上的平均值为__________.
证明当x∈(0,π]时,不等式成立。
已知α1,α2,α3是四元非齐次线性方程组AX=b的3个解,其中2α1一α2=[0,2,2,2]T,α1+α2+α3=[4,一1,2,3]T,2α2+α3=[5,一1,0,1]T,秩(A)=2,那么方程组AX=b的通解是__________.
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(Ⅰ)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;(Ⅱ)设,求出可由两组向量同时表示的向量.
设某商品的需求函数是,则需求Q关于价格p的弹性是_____________。
设y=y(x)由方程y=f(x2+y2)+f(x+y)确定,且y(0)=2,其中f(x)可导,且f’(2)=1/2,f’(4)=1,则y’(0)=________.
设在点处,函数f(x,y)=x2+(y-1)2(x≠0)在条件=1(a>0,b>0)下取得最小值,求a,b的值.
设曲线Y=a与y=㏑(x>0)在点(x0,y0)处有公切线.求两曲线与x轴所围图形绕x轴旋转一周所得旋转体的体积V.
随机试题
胃十二指肠消化性溃疡穿孔最好发的部位是()
高血压伴有支气管哮喘时,不宜应用下列哪类药物
女,25岁,间断发热5天,于8月底来诊。6天前由南方到北京,次日出现寒战、发热、头痛,服退烧药后热退,2天后再次高热,持续数小时,大汗后退热,伴乏力,精神差。实验室检查:血WBC6.5×109/L,淋巴细胞0.40。最可能的诊断是
2020年初,某医院召开药事管理与药物治疗学委员公会议和抗菌药物管理工作组审议会议,会议通报了医院合理用药情况,拟定了2017年全院抗菌药物专项整治工作方案,并对院内抗菌药物品种遴选、采购、清退、更换等事宜进行表决。根据上述材料,关于医疗机构清退抗菌药
对车船税所涉及的核定载客人数、自重、净吨位、马力等计税标准的确定理解不正确的是()。
下列选项中,符合交通肇事罪中“因逃逸致人死亡”的是()。
(2015广东)有两箱数量相同的文件需要整理。小张单独整理好一箱文件要用4.5小时,小钱要用9小时,小周要用3小时。小周和小张一起整理第一箱文件,小钱同时开始整理第二箱文件。一段时间后,小周又转去和小钱一起整理第二箱文件,最后两箱文件同时整理完毕。则小周和
多元社会
A、London.B、Paris.C、NewYork.D、Beijing.A细节题。根据I’vebeentoLondonforacoupleofdays可知她这段时间在伦敦。因此,正确答案为A。
Electronictrash,knownase-waste,ispilingupfasterthaneverinAmericanhomesandbusinesses.Peopledonotknowwhattod
最新回复
(
0
)