首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(0,+∞)内连续,f(1)=,且对一切的x、t∈(0,+∞)满足条件: ∫1xtf(u)du=t∫1xf(u)du+x∫1tf(u)du. 求函数f(x)的表达式.
设函数f(x)在(0,+∞)内连续,f(1)=,且对一切的x、t∈(0,+∞)满足条件: ∫1xtf(u)du=t∫1xf(u)du+x∫1tf(u)du. 求函数f(x)的表达式.
admin
2017-07-26
50
问题
设函数f(x)在(0,+∞)内连续,f(1)=
,且对一切的x、t∈(0,+∞)满足条件:
∫
1
xt
f(u)du=t∫
1
x
f(u)du+x∫
1
t
f(u)du.
求函数f(x)的表达式.
选项
答案
由已知条件可知,等式两边关于变量t是可导的.于是,对等式两边关于t求导,得 xf(xt)=∫
1
x
f(u)du+xf(t). 在上式中,若令t=1,得 xf(x)=∫
1
x
f(u)du+xf(1)=∫
1
x
f(u)du+[*]x. 显然,上式两边关于变量x也是可导的.于是,对等式两边关于x求导,得f(x)+xf’(x)=f(x)+[*].这是一个变量可分离的微分方程. 两边同时对变量x积分,有f(x)=[*](lnx+c),其中c为任意常数. 由f(1)=[*](lnx+1).
解析
本题主要考查如何将一个积分方程化为一个微分方程,并用相应的方法求解微分方程的特解.
转载请注明原文地址:https://kaotiyun.com/show/ifH4777K
0
考研数学三
相关试题推荐
二次型f(x1,x2,x3)=(x1+ax2-2x3)2+(2x2+3x3)2+(x1+3x2+ax3)2正定的充分必要条件为________.
A、 B、 C、 D、 C
A、 B、 C、 D、 B
已知弹簧自然长度为0.6m,10N的力使它伸长到1m,问使弹簧从0.9m伸长到1m时需要作的功.
设A,B,c三点的向径依次为r1,r2,r3试用r1,r2,r3表示△ABC的面积,并证明:A,B,C三点共线的充分必要条件是r1×r2+r2×r3+r3×r1=0
设函数f(x),g(x)在区间[0,b]上连续,且f(x)单调增加,0≤g(x)≤1.证明:
随机试题
滑动轴承的摩擦状态大多数情况下处于()。
都是联绵词的一组是()
A.alotofmoneyB.expresspublicfeelingonlocalissuesC.morningD.localpeopleE.nationalissuesF.localissuesMany
冠状动脉CTA在临床应用广泛,关于冠状动脉CTA。冠状动脉CTA的适应证错误的是
商业银行贷给同一借款人的贷款金额不得超过银行资本金额的( )。
基金托管人应当履行的职责包括()等。
在收容教养期间,对被收容教养的未成年人实行( )方针。
根据所给材料,回答下面问题
建设生态文明,必须保护生态环境。保护生态环境的根本之策是
Inthepastdecade,newscientificdevelopmentsincommunicationshavechangedthewaymanypeoplegatherinformationaboutpoli
最新回复
(
0
)