首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是区间[0,+∞)上具有连续导数的单调增函数,且f(0)=1。对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周生成一旋转体。若该旋转体的侧面积在数值上等于其体积的2倍,求函数f(x)的表达式。
设f(x)是区间[0,+∞)上具有连续导数的单调增函数,且f(0)=1。对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周生成一旋转体。若该旋转体的侧面积在数值上等于其体积的2倍,求函数f(x)的表达式。
admin
2021-01-19
84
问题
设f(x)是区间[0,+∞)上具有连续导数的单调增函数,且f(0)=1。对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周生成一旋转体。若该旋转体的侧面积在数值上等于其体积的2倍,求函数f(x)的表达式。
选项
答案
旋转体的体积V=π∫
0
t
f
2
(x)dx, 侧面积S=2π∫
0
t
f(x)[*]dx, 由题设条件知 ∫
0
t
f
2
(x)dx=∫
0
t
f(x)[*]dx, 上式两端对t求导得f
2
(t)=f(t)[*] 即y’=[*] 由分离变量法解得ln(y+[*])=t+C
1
, 即y+[*]=Ce
t
。 将y(0)=1代入得C=1,故 y+[*]=e
t
,y=1/2(e
t
+e
-t
)。 于是所求函数为 y=f(x)=1/2(e
x
+e
-x
)。
解析
转载请注明原文地址:https://kaotiyun.com/show/iq84777K
0
考研数学二
相关试题推荐
设f(x)在[a,b]上连续,证明:
设f(x,y)=证明:f(x,y)在点(0,0)处可微,但在点(0,0)处不连续.
在椭圆=1的第一象限部分上求一点P,使该点处的切线,椭圆及两坐标轴所围图形的面积为最小.
求分别满足下列关系式的f(x).1)f(x)=∫0xf(t)dt,其中f(x)为连续函数;2)f’(x)+xf’(一x)=x.
设函数f(x)处处可导,且0≤f’(x)≤(k>0为常数),又设x0为任意一点,数列{x0}满足xn=f(xn-1)(n=1,2,…),试证:当n→∞时,数列{xn}的极限存在.
设f(x)在区间[一a,a](a>0)上具有二阶连续导数,f(0)=0.证明:在[一a,a]上存在η,使
设向量组α1=(a,0,10)T,α2=(一2,1,5)T,α3=(一1,1,4)T,β=(1,b,c)T,试问:当a,b,c满足什么条件时,回答下列问题:β可由α1,α2,α3线性表出,且表示唯一;
平面曲线L:绕z轴旋转所得曲面为S,求曲面S的内接长方体的最大体积.
设函数f(χ)在区间[0,1]上连续,并设,∫01f(χ)dχ=a,求∫01dχ∫χ1f(χ)f(y)dy.
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。写出f(x)在[-2,0)上的表达式;
随机试题
在下列哪种教养方式的家庭环境中成长的孩子多表现为任性、幼稚、自私、野蛮、无礼、独立性差、唯我独尊、蛮横无理、胡闹等()
罕有肌肉、关节及其他深部组织出血发生的疾病是
护士对全麻苏醒期患者应采取的护理措施包括
下列关于《与贸易有关的知识产权协议》的表述中,不正确的是:()
背景材料:某高速公路段上有一座主跨为2m×30m预应力混凝土T形截面简支梁桥,采用预制吊装,后张法施工。在现场施工中,当T形截面简支梁构件达到规定强度时,进行张拉。张拉过程中按设计要求在两端同时对称张拉,预应力张拉采用应力控制,同时以伸
小公司效应支持市场有效性假说。()
在制定总体审计策略的初始阶段,注册会计师应当做的工作是()。
分析张萱的《虢国夫人游春图》。
(2017·内蒙古)目前多媒体计算机CPU处理信息时,采用的是()数字编码。
(北京航空航天大学2010年试题)Whenaninventionismade,theinventorhasthreepossible【1】ofactionopentohim;hecangivetheinvent
最新回复
(
0
)