首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是区间[0,+∞)上具有连续导数的单调增函数,且f(0)=1。对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周生成一旋转体。若该旋转体的侧面积在数值上等于其体积的2倍,求函数f(x)的表达式。
设f(x)是区间[0,+∞)上具有连续导数的单调增函数,且f(0)=1。对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周生成一旋转体。若该旋转体的侧面积在数值上等于其体积的2倍,求函数f(x)的表达式。
admin
2021-01-19
92
问题
设f(x)是区间[0,+∞)上具有连续导数的单调增函数,且f(0)=1。对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周生成一旋转体。若该旋转体的侧面积在数值上等于其体积的2倍,求函数f(x)的表达式。
选项
答案
旋转体的体积V=π∫
0
t
f
2
(x)dx, 侧面积S=2π∫
0
t
f(x)[*]dx, 由题设条件知 ∫
0
t
f
2
(x)dx=∫
0
t
f(x)[*]dx, 上式两端对t求导得f
2
(t)=f(t)[*] 即y’=[*] 由分离变量法解得ln(y+[*])=t+C
1
, 即y+[*]=Ce
t
。 将y(0)=1代入得C=1,故 y+[*]=e
t
,y=1/2(e
t
+e
-t
)。 于是所求函数为 y=f(x)=1/2(e
x
+e
-x
)。
解析
转载请注明原文地址:https://kaotiyun.com/show/iq84777K
0
考研数学二
相关试题推荐
设y=y(x)是由方程2y3一2y2+2xy一x2=1确定的,则y=y(x)的极值点是_________。
某湖泊水量为V,每年排入湖泊中内含污染物A的污水量为,流入湖泊内不含A的水量为,流出湖的水量为.设1999年底湖中A的含量为5m0,超过国家规定指标.为了治理污染,从2000年初开始,限定排入湖中含A污水的浓度不超过.问至多经过多少年,湖中污染物A的含量降
设L:y=e-x(x≥0).求由y=e-x、x轴、y轴及x±a(a>0)所围成平面区域绕x轴一周而得的旋转体的体积V(a).
设曲线y=ax2(a≥0,常数a>0)与曲线y=1一x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形D.求D绕x轴旋转一周所成的旋转体的体积V(a);
设f′(χ)在[0,1]上连续,且f(1)=f(0)=1.证明:∫01f′2(χ)dχ≥1.
设A是n阶矩阵,证明:A=O的充要条件是AAT=O.
求下列平面曲线的弧长:(Ⅰ)曲线9y2=x(x-3)2(y≥0)位于x=0到x=3之间的一段;(Ⅱ)曲线=1(a>0,b>0,a≠b).
设其中函数f,g具有二阶连续偏导数,求
设f(χ)在区间[a,b]上二阶连续可导,证明:存在ξ∈(a,b),使得∫abf(χ)dχ=(b-a)ff〞(ξ).
设曲线y=a+χ-χ3,其中a<0.当χ>0时,该曲线在χ轴下方与y轴、χ轴所围成图形的面积和在χ轴上方与χ轴所围成图形的面积相等,求a.
随机试题
安装压力表时应注意哪些事项?
高渗性脱水可考虑如下治疗,但哪项应除外
男,65岁。高血压病史20年,近日出现上腹部疼痛,经钡餐检查诊断为胃溃疡,除应用抗消化性溃疡药外,其控制血压药物最好选用
我国法院的裁判请求外国法院承认和执行应当具备的条件有()。
对合同执行者而言,合同跟踪的对象有( )。
出于对消费者剩余和企业利润分配公正的考虑,政府定价的规范理论通常给出了定价的预算约束,即()。[2007年真题]
高速铁路的列车行驶速度应当达到()。
在某心理学实验中,甲组31名被试成绩的方差为36,乙组25名被试成绩的方差为91,若要在0.05水平上检验甲、乙两组被试的方差差异是否具有统计学意义,正确的方法是()
Sadnessisn’tmanly—thisEricWeaverknew.WhendepressionengulfedthisNewYorkpolicesergeant,ittookadifferentguise:a
TomJohnsoncametoa(11).Hewantedtostayinasingleroomwithbath.Hemadethereservationatthe(12).Afterhearrive
最新回复
(
0
)