首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X与Y相互独立,且都在[0,1]上服从均匀分布,试求: (I)U=XY的概率密度fU(u); (Ⅱ)V=|X—Y|的概率密度fV(v).
设随机变量X与Y相互独立,且都在[0,1]上服从均匀分布,试求: (I)U=XY的概率密度fU(u); (Ⅱ)V=|X—Y|的概率密度fV(v).
admin
2019-01-05
57
问题
设随机变量X与Y相互独立,且都在[0,1]上服从均匀分布,试求:
(I)U=XY的概率密度f
U
(u);
(Ⅱ)V=|X—Y|的概率密度f
V
(v).
选项
答案
根据X与Y相互独立且密度函数已知,因此可以用两种方法:分布函数法和公式法求出U、V的概率密度. (I)分布函数法.根据题设知(X,Y)联合概率密度 [*] 所以U=XY的分布函数为(如图3—7所示) [*] (1)当u≤0时,F
U
(u)=0;当u≥1时,F
U
(u)=1; (2)当0<u<1时, [*] (Ⅱ)公式法.设Z=X—Y=X+(一Y).其中X与(一Y)独立,概率密度分别为 [*] 根据卷积公式得Z的概率密度 f
Z
(z)=∫
-∞
+∞
f
X
(z—y)f
-Y
(y)dy=∫
-1
0
f
X
(z—y)dy [*] V=|X—Y|=|Z|的分布函数为F
V
(v)=P{|Z|≤v|,可得 当v≤0时,F
V
(v)=0;当v>0时,F
V
(v)=P{一v≤Z≤v}=∫
-v
v
f
Z
(z)dz; 由此知,当0<v<1时, F
V
(v)=∫
-v
0
(z+1)dz+∫
0
v
(1一z)dz=2v-v
2
; 当v≥1时, F
V
(v)=∫
-v
-1
0dz+∫
-1
0
(z+1)dz+∫
0
1
(1一z)dz+∫
1
v
0dz=1. 综上可得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/iqW4777K
0
考研数学三
相关试题推荐
对于任意两随机变量X和Y,与命题“X和Y不相关”不等价的是()
设随机变量X与y独立,X在区间[0,2]上服从均匀分布,Y服从参数为2的指数分布,求:(Ⅰ)二维随机变量(X,y)的联合概率密度;(Ⅱ)概率P{X≤Y}。
从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是。设X为途中遇到红灯的次数,求随机变量X的分布律、分布函数和数学期望。
设三阶实对称矩阵A的特征值为λ1=1,λ2=—1,λ3=0;对应λ1,λ2的特征向量依次为p1=(1,2,2)T,p2=(2,1,—2)T,求A。
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
已知随机变量X与Y相互独立且都服从参数为的。—1分布,即P{X=0}=P{X=1}=,P{Y=0}=P{Y=1}=,定义随机变量Z=求Z的分布;(X,Z)的联合分布;并问X与Z是否独立。
用变量代换x=cost(0<t<π)化简微分方程(1—x2)y"—xy’+y=0,并求其满足y|x=0=1,y’|x=0=2的特解。
假设随机变量X与Y相互独立。且则a=____________.b=____________,Z=X+Y的分布律为____________.
设函数f(x)在x=a的某邻域内有定义,且则在x=a处()
随机试题
医院为病人检查时使用的CT技术,其术语是指()。
A、Thedaybeforepresentation.B、Rightafteracceptingtheassignment.C、Beforeyou’regiventheassignment.D、Whenyou’realrea
IFG是指
发育毒性是指()。
安全生产责任的行政处分规定包括()。
雇主要求中可能包括()内容。
保税区与境外之间进出的货物,海关实行()的申报方式。
学习西方并没有错,但把西方视为“真理”则大错特错了。中国并不拒绝其他文明和价值,但中国文化本身必须成为主体。在学习西方过程中,因为没有主体意识,中国文化就失去了主体地位。问题在于,西方文化主导下的西方话语解释不了中国的一切。今天,越来越多的人已经意识到西方
—Whataretheydoing?—They______readyforthesportsmeeting.
A、Itiscausedbytoomuchfoodandlittlephysicalexercise.B、Itiscausedbywhathappenedsuddenlyinourdailylife.C、Iti
最新回复
(
0
)