首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1=(1,3,5,—1)T,α2=(2,7,a,4)T,α3=(5,17,—1,7)T, (Ⅰ)若α1,α2,α3线性相关,求a的值; (Ⅱ)当a=3时,求与α1,α2,α3都正交的非零向量α4; (Ⅲ)当a=3时,证明α1,
已知α1=(1,3,5,—1)T,α2=(2,7,a,4)T,α3=(5,17,—1,7)T, (Ⅰ)若α1,α2,α3线性相关,求a的值; (Ⅱ)当a=3时,求与α1,α2,α3都正交的非零向量α4; (Ⅲ)当a=3时,证明α1,
admin
2023-01-03
27
问题
已知α
1
=(1,3,5,—1)
T
,α
2
=(2,7,a,4)
T
,α
3
=(5,17,—1,7)
T
,
(Ⅰ)若α
1
,α
2
,α
3
线性相关,求a的值;
(Ⅱ)当a=3时,求与α
1
,α
2
,α
3
都正交的非零向量α
4
;
(Ⅲ)当a=3时,证明α
1
,α
2
,α
3
,α
4
可表示任一个4维列向量.
选项
答案
(Ⅰ)α
1
,α
2
,α
3
线性相关[*]秩r(α
1
,α
2
,α
3
)<3.由于 [*] 所以a=一3. Ⅱ设α
4
=(x
1
,x
2
,x
3
,x
4
)
T
,则有(α
1
,α
4
)=0,(α
2
,α
4
)=0,(α
3
,α
4
)=0,即 [*] 所以x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=α恒有解,即任一4维列向量必可由α
1
,α
2
,α
3
,α
4
线性表出. 或者由(Ⅰ)知a=3时,α
1
,α
2
,α
3
必线性无关,那么:若k
1
α
1
+k
2
α
2
+k
3
α
3
+k
4
α
4
=0,用α
4
T
左乘上式两端并利用α
4
T
α
1
=α
4
T
α
2
=α
4
T
α
3
=0,有k
4
α
4
T
α
4
=0,又α
4
α
1
≠0,故必有k
4
=0. 于是k
1
α
1
+k
2
α
2
+k
3
α
3
=0.由α
1
,α
2
,α
3
线性无关知必有k
1
=0,k
2
=0,k
3
=0,从而 α
1
,α
2
,α
3
,α
4
必线性无关,而5个4维列向量必线性相关,因此任一个4维列向量都可由α
1
,α
2
,α
3
,α
4
线性表出.
解析
转载请注明原文地址:https://kaotiyun.com/show/irgD777K
0
考研数学二
相关试题推荐
语言中能独立运用的最小单位是_____。
内部分歧最大的方言区是()。
分析下列划线部分的语义角色:我家去年盖了一幢洋楼。
某县扶贫办副主任甲,利用职务将一项造价20万的扶贫工程定价40万,对外招标。甲冒用A公司的营业执照、安全许可证等证明材料,参与该项目招标,又通过职权运作使“A公司”中标。之后,甲以“A公司”的名义将工程交给村民乙承建,并在工程完工验收后,利用职权将40万元
医学实验已经证明在药物支持下的戒烟治疗方法具有明显的成效。巴塞罗那一家医院的三位医生试图尝试另一种完全不依赖于药物,通过逐步减少吸烟数量来达到戒烟目的的治疗方法。他们对111名烟龄基本相同的戒烟者进行了分组研究,第一组61人接受了在药物支持下的戒烟治疗,而
一座塑料大棚中有6块大小相同的长方形菜池子,按照从左到右的次序依次排列为:1、2、3、4、5和6号。而且1号和6号不相邻。大棚中恰好需要种6种蔬菜:Q、L、H、X、S和Y。每块菜池子只能种植其中的一种。种植安排必须符合以下条件:Q在H左侧的某一块菜池中种
在19世纪,英国的城市人口上升,而农村人口下降。一位历史学家推理说,工业化并非产生这种变化的原因,这种变化是由一系列人口向城市地区的迁移而造成的,而这种迁移都是发生在每次农业经济的衰退时期。为证明这种假说,这位历史学家将经济数据同人口普查数据作了对比。以下
玛雅遗址挖掘出一些珠宝作坊,这些作坊位于从遗址中心向外辐射的马路边上,且离遗址中心有一定的距离。由于贵族仅居住在中心地区,考古学家因此得出结论:这些作坊制作的珠宝不是供给贵族的,而是供给一些中产阶级的,他们一定已足够富有,可以购买珠宝。对于在这些
设等差数列{an}的前n项和为Sn,如果a2=9,S4=40,则常数c为()时,数列成等差数列。
函数的最小值为()。
随机试题
简述公务员辞退的特点。
护士对欲行阴道后穹窿穿刺患者解释操作,正确的是
男性,46岁,因外伤后腹痛,面色渐苍白,出冷汗,急诊入院。查血压下降,行剖腹探查,术中见腹腔内出血、脾损伤故行脾切除。标本见脾门处向外达下缘不规则被膜及实质破裂,破裂处切面有凝血块,镜下出血区边缘见急性炎症,该患者应诊断为
某9月龄种鸡群,产蛋率和种蛋的孵化率偏低,部分鸡消瘦、腹部膨大。剖检见肝脏、肾脏、法氏囊、性腺、脾脏等处有肿瘤样结节。该病最可能的诊断是
某施工单位将工程转包,给建设单位造成5万元损失,则该施工单位不可能承接的法律责任是()
可用除9法查找错账的有()。
关于小学儿童的记忆,以下表述正确的是()
与RIPVl相比,RIPV2的改进是____________。
有以下程序: #define N 20 fun(int a[],int,n,int m) { int,i,j; for(i=m;i>=n;i-)a[i+1]=a[i] } main() { int i,
ThetiesymbolizesallofthefollowingexceptWhobroughttheFrenchmen’sneckweartoBritain?
最新回复
(
0
)