首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可微,且f(x)dx=f(0),试证:存在点ξ∈(0,1),使得 f’(ξ)=0.
设f(x)在[0,1]上连续,在(0,1)内可微,且f(x)dx=f(0),试证:存在点ξ∈(0,1),使得 f’(ξ)=0.
admin
2017-07-26
73
问题
设f(x)在[0,1]上连续,在(0,1)内可微,且
f(x)dx=f(0),试证:存在点ξ∈(0,1),使得
f’(ξ)=0.
选项
答案
因为f(x)在[0,1]上连续,由积分中值定理,存在点c∈[[*],1],使得 [*] 又f(x)在[0,c]连续,在(0,c)内可导,且f(0)=f(c).由洛尔定理,存在点ξ∈(0,c)[*](0,1),使得f’(ξ)=0.
解析
待证结论含有导数,所以用洛尔定理证明.
证明的关键是在[0,1]内构造辅助区间[0,c],使得f(0)=f(c).点c可由已知条件和积分中值定理得到.
转载请注明原文地址:https://kaotiyun.com/show/iuH4777K
0
考研数学三
相关试题推荐
设E,F是两个事件,判断下列各结论是否正确,如果正确,说明其理由;如果不正确,给出其反例.(1)P(E∩F)≤P(E|F);(2)P(E∩F|F)=P(E|F).
设n阶矩阵A的各列元素之和为2且|A|=4,则它的伴随矩阵A的各列元素之和为_____.
已知非齐次线性方程组x1+x2+x3+x4=-1;4x1+3x2+5x3-x4=-1;ax1+x2+3x3+bx4=-1;有3个线性无关的解.证明方程组系数矩阵A的秩r(A)=2;
设函数f(x)在点x。处有连续的二阶导数,证明
设A是m×n矩阵,则下列4个命题①若r(A)=m,则非齐次线性方程组Ax=b必有解;②若r(A)=m,则齐次方程组Ax=0只有零解;③若r(A)=n,则非齐次线性方程组Ax=b有唯一解;④若r(A)=n,则齐次方程组Ax=0只有零解中正确的是
选取适当的变换,证明下列等式:
设y(x)为微分方程y’’-4y’+4y=0满足初始条件y(0)=0,y’(0)=2的特解,则∫01y(x)dx=__________.
设A为3阶矩阵,P为3阶可逆矩阵,且若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则Q-1AQ=().
某企业生产某种商品的成本函数为C=a+aQ+cQ2,收入函数为R=lQ一sQ2,其中常数a,b,c,l,s都是正常数,Q为产量,求:当企业利润最大时,t为何值时征税收益最大.
设f(x)在[0,1]上连续,(0,1)内可导,且f(0).f(1)>0,f(1)+∫01f(x)dx=0.试证:至少存在一点ξ∈(0,1),使f’(ξ)=ξf(ξ).
随机试题
在职业选择以及人员甄选中具有重要影响的是()职业兴趣测试或职业性向测试。
有抗震要求的某多层房屋(无地下室),采用单桩支承独立柱。下列关于桩基承台之间构造连系梁的要求中正确的是()。
某建筑地基采用强夯法处理,试夯后发现地基有效加固深度未达到设计要求,下列()项对增加有效加固深度最有效。
下列不属于变更令的内容的是()。
组织构成一般是上小下大的形式,由( )等密切相关、相互制约的因素组成。
导游员虽然不爱岗敬业,但心中也会装有游客,并为之提供热情周到的服务,因为游客有可能给予小费。()
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Aχ=0的两个解.(1)求A的特征值与特征向量;(2)求正交矩阵Q和对角矩阵A,使得QTAQ=∧.
InwhichaspectaretheUniversitiessuperiortotheUniversityCollegesandInstitutes?______Theauthorsmainpurposeinwrit
Itisnaturalforyoungpeopletobecriticaloftheirparentsattimesandtoblamethemforthemostofthemisunderstandings
I’mwillingtolendyouahand______busyI’mforthemoment.
最新回复
(
0
)