首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)二阶连续可导且满足关系f"(x)+f’2(x)=x,且f’(0)=0,则( )。
设函数f(x)二阶连续可导且满足关系f"(x)+f’2(x)=x,且f’(0)=0,则( )。
admin
2019-09-23
80
问题
设函数f(x)二阶连续可导且满足关系f"(x)+f’
2
(x)=x,且f’(0)=0,则( )。
选项
A、f(0)是f(x)的极小值
B、f(0)是f(x)的极大值
C、(0,f(0))是y=f(x)的拐点
D、(0,f(0))不是y=f(x)的拐点
答案
C
解析
由f’(0)=0得f"(0)=0,f"’(x)=1-2f’(x)f"(x),f"’(0)=1>0,由极限保号性存在δ>0,当0<|x|<δ时,f"’(x)>0,再由f"(0)=0得
故(0,f(0))是曲线y=f(x)的拐点,选C.
转载请注明原文地址:https://kaotiyun.com/show/j1A4777K
0
考研数学二
相关试题推荐
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3.(1)证明:β,Aβ,A2β线性无关;(2)若A3β=Aβ,求秩r(A一E)及行列式|A+2E|.
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1.证明:存在ξ∈[0,2],使得2f(0)+f(1)+3f(2)=6f(ξ).
已知的三个特解,试求该方程的通解.
[*]由密度函数求分布函数可以用积分法,但当涉及分段密度函数时一定要分清需要积分的区域,故一般先画个草图(图3-2),标出非零的密度函数,然后分不同情况观察(X,Y)落在给定的(x,y)左下方平面区域内的概率,从而计算F(x,y)的值。在计算随机变量满足某
设xOy平面第一象限中有曲线Γ:y=y(x),过点A(0,—1),y′(x)>0.又M(x,y)为Γ上任意一点,满足:弧段的长度与点M处Γ的切线在x轴上的截距之差为—1.导出y(x)满足的微分方程和初始条件.
若函数其中f是可微函数,且则函数G(x,y)=()
以下三个命题,①若数列{un)收敛A,则其任意子数列必定收敛于A;②若单调数列{xn}的某一子数列收敛于A,则该数列必定收敛于A;③若数列{x2n}与{xn+}都收敛于A,则数列{xn}必定收敛于A正确的个数为()
设f(x,y)=,试讨论f(x,y)在点(0,0)处的连续性,可偏导性和可微性.
若f(x,y)为关于x的奇函数,且积分区域D关于y轴对称,则当f(x,y)在D上连续时,必有(x,y)dxdy=____________.
设A,B均是n阶非零矩阵,已知A2=A,B2=B,且AB=BA=O,则下列3个说法:①0未必是A和B的特征值;②1必是A和B的特征值;③若α是A的属于特征值1的特征向量,则α必是B的属于特征值0的特征向量.正确说法的
随机试题
爱之初,要让我们所爱的人做他们自己,而不要把他们变成我们心目中的形象。否则,我们所爱的仅仅是我们在他们身上的影子。最快乐的人不必事事尽善尽美,他们只会让大部分事情顺其自然。当你呱呱落地时,你大声地哭泣,周围的每个人都朝你微笑。而当你走完人生时,你
“天癸”的产生取决于
十二指肠溃疡的好发部位是
可待因具有成瘾性,其主要原因是
某市政府投资的一建设工程项目,项目法人单位委托某招标代理机构采用公开招标方式代理项目施工招标,并委托具有相应资质的工程造价咨询企业编制了招标控制价。招标过程中发生以下事件:事件1:招标信息在招标信息网上发布后,招标人考虑到该项目建设工期紧,为缩短招标时间
关于进出境物品,下列表述正确的是()。
英国是世界上最早建立注册会计师职业的国家,因此最早制定审计准则的国家是英国。()
预防龋齿的最重要的措施是()
劳动法律关系变更,指劳动者同用人单位依据劳动法律规范,变更其原来确定的权利义务内容。劳动法律关系变更一般是因发生变更工作地方、工种和工作职务的劳动法律事实而引起的。根据以上的定义,下面哪种行为是劳动法律关系变更?()
小张的手表每天快30分钟,小李的手表每天慢20分钟,某天中午12点,两人同时把表调到标准时间,则两人的手表再次同时显示标准时间最少需要的天数为()。
最新回复
(
0
)