首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设p(x),q(x),f(x)≠0均是关于x的已知连续函数,y1(x),y2(x),y3(x)是y”﹢p(x)y’﹢q(x)y=f(x)的3个线性无关的解,C1,C2是两个任意常数,则该非齐次方程的通解是 ( )
设p(x),q(x),f(x)≠0均是关于x的已知连续函数,y1(x),y2(x),y3(x)是y”﹢p(x)y’﹢q(x)y=f(x)的3个线性无关的解,C1,C2是两个任意常数,则该非齐次方程的通解是 ( )
admin
2018-12-21
65
问题
设p(x),q(x),f(x)≠0均是关于x的已知连续函数,y
1
(x),y
2
(x),y
3
(x)是y
”
﹢p(x)y
’
﹢q(x)y=f(x)的3个线性无关的解,C
1
,C
2
是两个任意常数,则该非齐次方程的通解是 ( )
选项
A、C
1
y
1
﹢(C
2
-C
1
)y
2
-(1﹢C
2
)y
3
.
B、(C
1
-C
2
)y
1
+(C
2
-1)y
2
﹢(1-C
1
)y
3
.
C、(C
1
﹢C
2
)y
1
﹢(C
1
-C
2
)y
2
﹢(1-Cy
2
)y
3
.
D、C
1
y
1
﹢C
2
y
2
﹢(1-C
1
-C
2
)y
3
.
答案
D
解析
实际上有下述定理.设p(x),q(x)与f(x)均为连续函数,f(x)≠0,考虑下述两个方程
y
”
﹢p(x)y
’
﹢q(x)y=f(x) (*)
及对应的齐次方程
y
”
﹢p(x)y
’
﹢q(x)y=0. (**)
①设y
1
(x),y
2
(x),y
3
(x)是式(*)的3个解,A,B,C为常数.并设
y=Ay
1
(x)﹢By
2
(x)﹢Cy
3
(x). (***)
则式(***)是式(*)的解的充要条件是
A﹢B﹢C﹦1:
式(***)是式(**)的解的充要条件是
A﹢B﹢C=0.
②设y
1
(x),y
2
(x),y
3
(x)是式(*)的3个线性无关的解,A,B,C中有两个为任意常数.
则式(***)是式(*)的通解的充要条件是
A﹢B﹢C=1:
式(***)是式(**)的通解的充要条件是
A﹢B﹢C=0.
本题用到上述②.验算上述y
1
,y
2
,y
3
的系数之和,(D)的系数之和为C
1
﹢C
2
﹢(1-C
1
-C
2
)=1.所以(D)是通解.
转载请注明原文地址:https://kaotiyun.com/show/g8j4777K
0
考研数学二
相关试题推荐
(2010年)设A=,正交矩阵Q使得QTAQ为对角矩阵.若Q的第1列为(1,2,1)T,求a,Q.
(2002年)矩阵A=的非零特征值是_______.
(1997年)已知A=且A2-AB=I,其中I是3阶单位矩阵,求矩阵B.
(2015年)已知函数f(χ)在区间[α,+∞)上具有2阶导数,f(a)=0,f′(χ)>0,f〞(χ)>0.设b>a,曲线y=f(χ)在点(b,f(b))处的切线与χ轴的交点是(χ0,0),证明a<χ0<b.
(2008年)设函数y=y(χ)由参数方程确定,其中χ(t)是初值问题的解,求.
(2013年)曲线对应于t=1的点处的法线方程为_______.
(2008年)在下列微分方程中,以y=C1eχ+C2cos2χ+C3sin2χ(C1,C2,C3为任意常数)为通解的是【】
(1998年)求函数f(χ)=在区间(0,2π)内的间断点,并判断其类型.
(1997年)已知y1=χeχ+e2χ,y2=χeχ+e-χ,y3=χeχ+e2χ-e-χ是某二阶线性非齐次微分方程的三个解,求此微分方程.
设A,B,C为常数,B2一AC>0,A≠0.u(x,y)具有二阶连续偏导数,试证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),将方程=0.
随机试题
巨大儿对母体可能的影响有
根据我国法律规定,涉外不动产物权民事争议,应适用()
A.奶及奶制品B.猕猴桃C.动物肝脏D.粮谷类E.马铃薯富含铁的食物是
下列哪项不是绿化的作用
患者女,70岁,无牙颌,全口义齿修复后1个月。主诉咀嚼费力,咀嚼肌易酸痛。患者还可能存在的临床表现是
西洋参的来源和成分为
利用烘干法测定水分的药物有()
屋面高聚物改性沥青防水卷材的常用铺贴方法有()。
下列项目管理工作中,不属于施工方项目管理任务的是()。
完整地表述了公安工作中党的领导、公安机关和人民群众三者的关系,反映我国公安工作的重要特色和优势的理论是()。
最新回复
(
0
)