首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(16年)设二维随机变量(X,Y)在区域D={(χ,y)|0<χ<1,χ2<y<}上服从均匀分布,令 (Ⅰ)写出(X,Y)的概率密度; (Ⅱ)问U与X是否相互独立?并说明理由; (Ⅲ)求Z=U+X的分布函数F(z).
(16年)设二维随机变量(X,Y)在区域D={(χ,y)|0<χ<1,χ2<y<}上服从均匀分布,令 (Ⅰ)写出(X,Y)的概率密度; (Ⅱ)问U与X是否相互独立?并说明理由; (Ⅲ)求Z=U+X的分布函数F(z).
admin
2017-05-26
75
问题
(16年)设二维随机变量(X,Y)在区域D={(χ,y)|0<χ<1,χ
2
<y<
}上服从均匀分布,令
(Ⅰ)写出(X,Y)的概率密度;
(Ⅱ)问U与X是否相互独立?并说明理由;
(Ⅲ)求Z=U+X的分布函数F(z).
选项
答案
(Ⅰ)区域D如图(a),面积为S
D
=[*],由题意,(X,Y)的概率密度为 [*] (Ⅱ)由题意,P(U≤0)=P(U=0)=P(X>Y) =[*] D
1
见图(b) [*] 可见[*], 故U与X不独立. (Ⅲ)F(z)=P(Z≤z)=P(U+X≤z)=P(U+X≤z,U=0)+P(U+X≤z,U=1)=P(X≤ z,X>Y)+P(X≤z-1,X≤Y) 可见,z<0时,F(z)=0; z≥2时,P(X≤z,X>Y)=P(X>Y),P(X≤z-1,X≤Y)=P(X≤Y) 所以F(z)=P(X>Y)+P(X≤Y)=1; 0≤z<1时,由-1≤z-1<0,知P(X≤z-1,X≤Y)=0, 而P(X≤z,X>Y)=[*],G
2
见图(e). 故F(z)=[*]z
2
-z
3
; 1≤z<2时,P(X≤z,X>Y)=P(X>Y)=[*], 这时0≤z-1<1,有 P(X≤z-1,X≤Y)=[*] G
3
见图(f). 所以F(z)=[*] [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/j3H4777K
0
考研数学三
相关试题推荐
e[解法一]又故原式=e.[解法二]设,则当x→∞时,u→0,于是原式=而由洛必达法则,得故原式:e.
设f’(x)在[a,b]上连续,且f’(a)>0,f’(b)
已知函数f(x)在区间(1—δ,1+δ)内具有二阶导数,f"(x)
在变力=(x2+y2+z2)的作用下,一质点从球面x2+y2+z2=a2上的一点A(x1,y1,z1)沿一简单光滑曲线L运动到球面x2+y2+z2=b2上的一点B(x2,y2,z2),b>a>0.则变力对质点所作的功().
设f(x)是连续的奇函数,则f(0)=0,其中D为:0≤x≤1,0≤y≤1.
设每天生产某种商品g单位时的固定成本为20元,边际成本函数C’(q)=0.4g+2元/件.求成本函数C(g).如果该商品的销售价为18元/件,并且所有产品都能够售出,求利润函数L(q),并问每天生产多少件产品时才能获得最大利润?
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(E为n阶单位矩阵).
设当x→0时,(1-cosx)ln(1+x2)是比xsinxn高阶的无穷小,而xsinxn是比ex2-1高阶的无穷小,则正整数n等于
若[x]表示不超过x的最大整数,则积分∫04[x]dx的值为()
设设A是二阶方阵,当k>2时,证明:Ak=O的充分必要条件为A2=O.
随机试题
简述精准营销的主要内容。
Anewkindofmachine【21】totaketheplaceofhumans.Thesemachines【22】dojobsthataretoodangerousforhumans.【23】,theyare
A.寒凝胃脏,阳气被遏,气机阻滞B.寒邪凝滞,中阳被遏,脉络痹阻C.寒温内盛,脾失健运,清浊不分D.外邪犯胃,中焦气滞,浊气不逆E.寒蓄中焦,气机不利,胃气上逆胃痛,寒邪客胃的病机为
与心排血量无关的是
老年性阴道炎的带下特点是()
抽样方案至少应当包括()。
将企业分为法人企业和非法人企业的依据是( )。
某机构设立一个义工发展小组,其总目标是通过系统性的义工小组培训,建立一支稳定的义工团队。围绕这个总目标,社会工作者建立了相应的其他目标。其中,“协助组员了解沟通的重要性和学习沟通的技巧”是小组的( )。
下列选项中,对商品经济的基本特征描述不正确的是()。
(90年)已知函数f(x)具有任意阶导数,且f’(x)=[f(x)]2.则当n为大于2的正整数时,f(x)的n阶导数f(n)(x)是
最新回复
(
0
)