首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶矩阵,α1,α2,α3为三维列向量且α1≠0,若Aα1=α1,Aα2=α1+α2,Aα3=α2+α3。 (Ⅰ)证明:向量组α1,α2,α3线性无关; (Ⅱ)证明:A不可相似对角化。
设A是三阶矩阵,α1,α2,α3为三维列向量且α1≠0,若Aα1=α1,Aα2=α1+α2,Aα3=α2+α3。 (Ⅰ)证明:向量组α1,α2,α3线性无关; (Ⅱ)证明:A不可相似对角化。
admin
2021-01-31
54
问题
设A是三阶矩阵,α
1
,α
2
,α
3
为三维列向量且α
1
≠0,若Aα
1
=α
1
,Aα
2
=α
1
+α
2
,Aα
3
=α
2
+α
3
。
(Ⅰ)证明:向量组α
1
,α
2
,α
3
线性无关;
(Ⅱ)证明:A不可相似对角化。
选项
答案
(Ⅰ)由Aα
1
=α
1
,得(A-E)α
1
=0, 由Aα
2
=α
1
十α
3
得(A-E)α
2
=α
1
, 由Aα
3
=α
2
+α
3
,得(A-E)α
3
=α
2
, 令k
1
α
1
+k
2
α
2
+k
3
α
3
=0,(1) 两边再左乘(A-E)得k
3
α
3
=0,(2) 由α
1
≠0得k
3
=0,代入(2)k
2
α
1
=0,则k
2
=0, 再代入(1)得k
1
α
1
=0,从而k
1
=0,于是α
1
,α
2
,α
3
线性无关。 由(Aα
1
,Aα
2
,Aα
3
)=(α
1
α
1
+α
2
α
2
+α
3
)得AP=[*], 从而P
-1
AP=[*]=B。 由|λE-A|-|λE-B|=(λ-1)
3
=0得A的特征值为λ
1
=λ
2
=λ
3
=1, E-B=[*],因为r(E-B)=-2,所以B只有一个线性无关的特征向量,即B不可相似对角化,而A~B,故A不可相似对角化。
解析
转载请注明原文地址:https://kaotiyun.com/show/j4x4777K
0
考研数学三
相关试题推荐
[2005年]设为正定矩阵,其中A,B分别为m阶、n阶对称矩阵,C为m×n矩阵.利用上题的结果判断矩阵B=CTA-1C是否为正定矩阵,并证明你的结论.
[2001年]设A为n阶实对称矩阵,秩(A)=n,Aij是A=[aij]n×n中元素aij的代数余子式.二次型记X=[x1,x2,…,xn]T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的矩阵为A
[2009年]设二次型f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3-2x2x3.求二次型f(x1,x2,x3)的矩阵的所有特征值.
(87年)已知随机变是X的概率分布为P(X=1}=0.2,P{X=2}=0.3,P{X=3}=0.5.试写出其分布函数F(χ).
(14年)求幂级数(n+1)(n+3)χn的收敛域及和函数.
(1996年)设函数z=f(u),方程u=φ(u)+∫yxp(t)dt确定u是x,y的函数,其中f(u),φ(u)可微;p(t),φ’(t)连续,且φ’(u)≠1.求
设X,Y为两个随机变量,其中E(X)=2,E(Y)=-1,D(X)=9,D(Y)=16,且X,Y的相关系数为由切比雪夫不等式得P{|X+Y-1|≤10}≥().
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且=0,又f(2)=2f(x)dx,证明:存在ξ∈(0,2),使得f’(ξ)+f"(ξ)=0。
设幂级数在x=6处条件收敛,则幂级数的收敛半径为()
设y=y(x)是二阶常系数微分方程y’’+py’+qy=e3x满足初始条件y(0)=y’(0)=0的特解,则当x→0时,函数的极限()
随机试题
个人住房按揭贷款的风险分析不包括()。
沙门菌属中能引起人类疾病的细菌除伤寒沙门菌、副伤寒沙门菌外,还主要有________、________、________等。
年轻人患有重度高血压,又无高血压家族史,为除外肾动脉狭窄引起的继发性高血压,对确诊有帮助的检查是
A、佐珠达西B、三十五味沉香丸C、二十九味能消散D、洁白丸E、十三味冥丸具有清瘟泻热,宽胸益肺,祛风通痹功能的方剂是
我国现行关税税法规定,来料加工增产的产品,经批准转内销时,价值在进口料件总值2%以内,且总价值在5000元以下的,可免征关税。()
由于天气干旱,池塘的水每天以均匀的速度减少。现在池塘的水可供20只羊饮用5天,或供16只羊饮用6天,那么,现在水量可供11只羊饮用()天。
小明为了获得父母的奖励而努力学习,他的学习动机是()
高纯,湖南人,从1995年开始,向国家有关机构与单位检举揭发到控告原国家食品与药品监督管理局局长郑筱萸(已被判处死刑),寄挂号信100多封,寄特快专递42件,发电子邮件400封,电报两封,北京上访21次。郑筱萸最终被绳之以法,高纯的行为()。
Ourape-menforefathershadnoobviousnaturalweaponsinthestrugglefor【C1】______intheopen.Theyhadneitherthepowerfult
【S1】【S2】
最新回复
(
0
)