首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶矩阵,α1,α2,α3为三维列向量且α1≠0,若Aα1=α1,Aα2=α1+α2,Aα3=α2+α3。 (Ⅰ)证明:向量组α1,α2,α3线性无关; (Ⅱ)证明:A不可相似对角化。
设A是三阶矩阵,α1,α2,α3为三维列向量且α1≠0,若Aα1=α1,Aα2=α1+α2,Aα3=α2+α3。 (Ⅰ)证明:向量组α1,α2,α3线性无关; (Ⅱ)证明:A不可相似对角化。
admin
2021-01-31
63
问题
设A是三阶矩阵,α
1
,α
2
,α
3
为三维列向量且α
1
≠0,若Aα
1
=α
1
,Aα
2
=α
1
+α
2
,Aα
3
=α
2
+α
3
。
(Ⅰ)证明:向量组α
1
,α
2
,α
3
线性无关;
(Ⅱ)证明:A不可相似对角化。
选项
答案
(Ⅰ)由Aα
1
=α
1
,得(A-E)α
1
=0, 由Aα
2
=α
1
十α
3
得(A-E)α
2
=α
1
, 由Aα
3
=α
2
+α
3
,得(A-E)α
3
=α
2
, 令k
1
α
1
+k
2
α
2
+k
3
α
3
=0,(1) 两边再左乘(A-E)得k
3
α
3
=0,(2) 由α
1
≠0得k
3
=0,代入(2)k
2
α
1
=0,则k
2
=0, 再代入(1)得k
1
α
1
=0,从而k
1
=0,于是α
1
,α
2
,α
3
线性无关。 由(Aα
1
,Aα
2
,Aα
3
)=(α
1
α
1
+α
2
α
2
+α
3
)得AP=[*], 从而P
-1
AP=[*]=B。 由|λE-A|-|λE-B|=(λ-1)
3
=0得A的特征值为λ
1
=λ
2
=λ
3
=1, E-B=[*],因为r(E-B)=-2,所以B只有一个线性无关的特征向量,即B不可相似对角化,而A~B,故A不可相似对角化。
解析
转载请注明原文地址:https://kaotiyun.com/show/j4x4777K
0
考研数学三
相关试题推荐
设3阶矩阵若A的伴随矩阵的秩等于1,则必有().
(2015年)Ⅰ)设函数u(x),v(x)可导,利用导数定义证明[u(x)v(x)]’=u’(x)v(x)+u(x)v’(x);Ⅱ)设函数u1(x),u2(x),…,un(x)可导,f(x)=u1(x)u2(x)…un(x),写出f(x)的
设an=(n=0,1,2,…).证明:数列{an}单调递减,且an=(n=2,3,…).
[2014年]设随机变量X的概率分布为P(X=1)=P(X=2)=在给定X=i的条件下,随机变量y服从均匀分布U(0,i),i=1,2.求Y的分布函数;
(2016年)设函数f(x)=∫01|t2一x2|dt(x>0),求f’(x),并求f(x)的最小值.
[2003年]设二次型f(x2,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.利用正交变换将二次型f化为标准形,并写出所用的正
设X,Y为两个随机变量,其中E(X)=2,E(Y)=-1,D(X)=9,D(Y)=16,且X,Y的相关系数为由切比雪夫不等式得P{|X+Y-1|≤10}≥().
设a为常数,则级数【】
设则级数
随机试题
龙门剪床的前后档板有何作用?
芍药汤主治的湿热痢,症状可见
咀嚼效率是指
关于胃粘膜保护剂正确的是
羊肉汤、辣子鸡、菜煎饼为枣庄“小吃三宝”。()
铁器时代的第一个地跨亚非的帝国是()。
患者,女性,50岁,因左上颌骨切除后需行游离植皮,在左大腿切取中厚皮片后,供区创面的处理是()。
软件需求分析方法中,结构化分析是一种常用的方法。结构化分析产生的系统说明书是由一套分层的【】、一本数据字典、一组小说明等及补充材料组成。
【B1】【B3】
Althoughtheeconomyseemed,afterafewtensemonths,to______thestormwithoutseriouslong-termdamage,thebankswerehit
最新回复
(
0
)