首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶矩阵,α1,α2,α3为三维列向量且α1≠0,若Aα1=α1,Aα2=α1+α2,Aα3=α2+α3。 (Ⅰ)证明:向量组α1,α2,α3线性无关; (Ⅱ)证明:A不可相似对角化。
设A是三阶矩阵,α1,α2,α3为三维列向量且α1≠0,若Aα1=α1,Aα2=α1+α2,Aα3=α2+α3。 (Ⅰ)证明:向量组α1,α2,α3线性无关; (Ⅱ)证明:A不可相似对角化。
admin
2021-01-31
76
问题
设A是三阶矩阵,α
1
,α
2
,α
3
为三维列向量且α
1
≠0,若Aα
1
=α
1
,Aα
2
=α
1
+α
2
,Aα
3
=α
2
+α
3
。
(Ⅰ)证明:向量组α
1
,α
2
,α
3
线性无关;
(Ⅱ)证明:A不可相似对角化。
选项
答案
(Ⅰ)由Aα
1
=α
1
,得(A-E)α
1
=0, 由Aα
2
=α
1
十α
3
得(A-E)α
2
=α
1
, 由Aα
3
=α
2
+α
3
,得(A-E)α
3
=α
2
, 令k
1
α
1
+k
2
α
2
+k
3
α
3
=0,(1) 两边再左乘(A-E)得k
3
α
3
=0,(2) 由α
1
≠0得k
3
=0,代入(2)k
2
α
1
=0,则k
2
=0, 再代入(1)得k
1
α
1
=0,从而k
1
=0,于是α
1
,α
2
,α
3
线性无关。 由(Aα
1
,Aα
2
,Aα
3
)=(α
1
α
1
+α
2
α
2
+α
3
)得AP=[*], 从而P
-1
AP=[*]=B。 由|λE-A|-|λE-B|=(λ-1)
3
=0得A的特征值为λ
1
=λ
2
=λ
3
=1, E-B=[*],因为r(E-B)=-2,所以B只有一个线性无关的特征向量,即B不可相似对角化,而A~B,故A不可相似对角化。
解析
转载请注明原文地址:https://kaotiyun.com/show/j4x4777K
0
考研数学三
相关试题推荐
[2013年]设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明厂在正交变换下的标准形为2y12+y22.
(91年)设随机变量(X,Y)在圆域χ2+y2≤r2上服从联合均匀分布.(1)求(X,Y)的相关系数ρ;(2)问X和Y是否独立?
(14年)求幂级数(n+1)(n+3)χn的收敛域及和函数.
已知α=[1,1,1]T是二次型2x12+x22+ax32+2x1x2+2bx1x3+2x2x3矩阵的特征向量,判断二次型是否正定,并求下列齐次方程组的通解:
设随机变量X1,X2,…,X12独立同分布且方差存在,则随机变量U=X1+X2+…+X7,V=X6+X7+…+X12的相关系数ρpv=____________.
已知级数与广义积分e(p-2)xdx均收敛,则p的取值范围是_________.
设f(x)在[0,1]上二阶连续可导,且f’(0)=f’(1).证明:存在ξ∈(0,1),使得
设则级数
随机试题
临床医学研究的保密道德哪项不正确
经产妇,40岁。近2年痛经并逐渐加重,伴经量增多及经期延长,届时需服强止痛药。查子宫均匀增大如孕8周,质硬,有压痛,经期压痛明显。
根据我国国情,现阶段我国土地整理重点在()。
(2010年)图4—10所示等边三角板ABC,边长a,沿其边缘作用大小均为F的力,方向如图所示。则此力系简化为()。
商业性企业及主营商业的企业,年应税销售额不低于50万元的,可以认定为一般纳税人。()
衡量一个广告市场成熟与否的重要标准就是看()在广告市场中的地位、成长发育状况及代理服务功能。
现代社会教师角色应如何定位?
讨论函数的连续性.
下列说法错误的是______。
Thefirstsentenceofthepassagemeansthat______.Whenwritingaboutthedutiesyouhavebeenengagedin,youshould______.
最新回复
(
0
)