首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4为4维列向量,满足α2,α3,α4线性无关,且α1+α3=2α2. 令A=(α1,α2,α3,α4),β=α1+α2+α3+α4.求线性方程组Aχ=β的通解.
设α1,α2,α3,α4为4维列向量,满足α2,α3,α4线性无关,且α1+α3=2α2. 令A=(α1,α2,α3,α4),β=α1+α2+α3+α4.求线性方程组Aχ=β的通解.
admin
2017-11-09
75
问题
设α
1
,α
2
,α
3
,α
4
为4维列向量,满足α
2
,α
3
,α
4
线性无关,且α
1
+α
3
=2α
2
.
令A=(α
1
,α
2
,α
3
,α
4
),β=α
1
+α
2
+α
3
+α
4
.求线性方程组Aχ=β的通解.
选项
答案
先求Aχ=0的基础解系. 由于α
2
,α
3
,α
4
线性无关,且α
1
=2α
2
-α
3
,得R(A)=3.又因为α
1
-2α
2
+α
3
+0.α
4
=0, 故Aχ=0基础解系为(1,-2,1,0)
T
.再求Aχ=β的一个特解. 由于β=α
1
+α
2
+α
3
+α
4
,故(1,1,1,1)
T
为一个特解.所以,Aχ=β的通解为 (1,1,1,1)
T
+k(1,-2,1,0)
T
,k为常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/jBX4777K
0
考研数学三
相关试题推荐
设A为三阶实对称矩阵,α1=(a,一a,1)T是方程组AX=0的解,α=(a,1,1一a)T是方程组(A+E)X=0的解,则a=________.
设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份.随机取出一个地区,再从中抽取两份报名表.(1)求先抽到的一份报名表是女生表的概率p;(2)设后抽到的一份报名表为男生的报名表,求先抽到的报名
袋中有a个黑球和b个白球,一个一个地取球,求第k次取到黑球的概率(1≤k≤a+b).
设(I),α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=,r(B)=2.(1)求方程组(I)的基础解系;(2)求方程组(Ⅱ)BX=0的基础解系;(3)(I)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
设二维随机变量(X,Y)在上服从均匀分布,则条件概率=________.
设f(x)在[a,b]上存在二阶导数.证明:存在ξ,η∈(a,b),使∫abf(t)dt=(b一a)3.
求微分方程y"一2y’一e2x=0满足条件y(0)=1,y’(0)=1的特解.
微分方程y’+ytanx=cosx的通解为y=________.
设f(x)在闭区间[一1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在[一1,1]内存在ξ,使得f’"(ξ)=3.
令f(x)=arctanr,由微分中值定理得[*]
随机试题
对国家税务总局的具体行政行为不服的,向国务院申请行政复议。()
人类生存和发展所不可缺少的宝贵资源及知识经济社会的重要支柱是
补阳还五汤具有的治疗作用是
最可能的诊断是为明确诊断应做下列哪项检查
股东大会的职责是()。
下列哪一项不属于开放式基金的特点?()
可以预警的自然灾害、事故灾难和公共卫生事件的预警级别,按照突发事件发生的紧急程度、发展势态和可能造成的危害程度分为一级、二级、三级和四级,分别用不同的颜色标识,属于最严重级别的颜色是()
从正方体中裁出如下图所示六个不同的三角形,将其分为两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是:
Accordingtothetext,"amassexodus"(Para.6)mostprobablymeansAsusedinthetext,"theallegedEden"(Para.6)symboliz
ThereisgrowinginterestinEastJapanRailwayCo.ltd.,oneofthesixcompanies,createdoutoftheprivatizednationalrail
最新回复
(
0
)