首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(0,+∞)三次可导,且当∈(0,+∞)时 |f(x)|≤M0, |f"’(x)|≤M3, 其中M0,M3为非负常数,求证f”(x)在(0,+∞)上有界.
设f(x)在(0,+∞)三次可导,且当∈(0,+∞)时 |f(x)|≤M0, |f"’(x)|≤M3, 其中M0,M3为非负常数,求证f”(x)在(0,+∞)上有界.
admin
2017-07-28
61
问题
设f(x)在(0,+∞)三次可导,且当
∈(0,+∞)时
|f(x)|≤M
0
, |f"’(x)|≤M
3
,
其中M
0
,M
3
为非负常数,求证f”(x)在(0,+∞)上有界.
选项
答案
分别讨论x>1与0<x≤1两种情形. 1)当x>1时考察二阶泰勒公式 [*] 两式相加并移项即得 [*] 2)当0<x≤1时对f”(x)用拉格朗日中值定理,有 f”(x)=f”(x)一f”(1)+f”(1)=f"’(ξ)(x一1)+f”(1),其中ξ∈(x,1). |f”(x)|≤|f"’(ξ)||x一1|+|f”(1)|≤M
3
+|f”(1)|(x∈(0,1]). 综合即知f”(x)在(0,+∞)上有界.
解析
转载请注明原文地址:https://kaotiyun.com/show/jKu4777K
0
考研数学一
相关试题推荐
设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是().
设R3中的向量ξ在基a1=(1,-2,1)T,a2=(0,1,1)T,a3=(3,2,1)T下的坐标为(x1,x2,x3)T,它在基β1,β2,β3下的坐标为(y1,y2,y3)T,且y1=x1-x2-x3,y2=-x1+x2,y3=x1+2x3,则由基β
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0,试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
(2011年试题,二)设L是柱面方程x2+y2=1与平面z=x+y的交线,从z轴正向往z轴负向看去为逆时针方向,则曲线积分=______________.
(1998年试题,二)设矩阵是满秩的,则直线与直线().
求空间第二型曲线积分其中L为球面x2+y2+z2=1在第1象限部分的边界线,从球心看L,L为逆时针.
用洛必达法则求下列极限:
防空洞的截面拟建成矩形加半圆(如图1.2—1),截面的面积为5平方米,问底宽x为多少时才能使建造时所用的材料最省?
计算曲面积分其中∑为下半球面z=的上侧.
有一椭圆形薄板,长半轴为a,短半轴为b,薄板垂直立于水中,而其短半轴与水面相齐,求水对薄板的侧压力.
随机试题
下列关于Word2010文件的保存说法中,错误的是()。
恶热、汗出、口渴、疲乏、尿黄,舌红、苔黄,脉虚数,属于()
升药的功效是
塔吊安装方案应由()单位编写。
下列有关态度与行为的关系描述不正确的是()。
不同法的形式具有不同的效力等级,下列各项中,效力低于地方性法规的是()。
某商品分别在购物网站和实体店进行销售,利润率都是100%。为了促销,网站推出该商品买二赠一活动,实体店在提高一定价钱后以六折销售,结果两者利润仍然相同。问实体店提高的价钱占该商品原来售价的比例是多少?
学与教相互作用的过程是由__________、____________和评价/反思过程三种活动过程交织在一起的。
某学校有一批树苗需要栽种在学院路两旁,每隔5米栽一棵。已知每个学生栽4棵树,则有202棵树没有人栽;每个学生栽5棵树,则有348人可以少栽一棵。问学院路共有多少米?
以下哪项列出的四名队员可以共同参加比赛?()如果H不参加比赛,则参加比赛的队员必然包括以下哪两名?()
最新回复
(
0
)