首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组B:b1,…,br能由向量组A:α1,…,αs线性表示为(b1,…,br)=(α1,…,αs)K,其中K为s×r矩阵,且向量组A组线性无关.证明向量组B线性无关的充分必要条件是矩阵K的秩r(K)=r.
设向量组B:b1,…,br能由向量组A:α1,…,αs线性表示为(b1,…,br)=(α1,…,αs)K,其中K为s×r矩阵,且向量组A组线性无关.证明向量组B线性无关的充分必要条件是矩阵K的秩r(K)=r.
admin
2016-05-31
34
问题
设向量组B:b
1
,…,b
r
能由向量组A:α
1
,…,α
s
线性表示为(b
1
,…,b
r
)=(α
1
,…,α
s
)K,其中K为s×r矩阵,且向量组A组线性无关.证明向量组B线性无关的充分必要条件是矩阵K的秩r(K)=r.
选项
答案
必要性: 令B=(b
1
,…,b
r
),A=(a
1
,…,a
s
),则有B=AK,由定理 r(B)=r(AK)≤min{r(A),r(K)}, 结合向量组B:b
1
,b
2
,…,b
r
线性无关知r(B)=r,故r(K)≥r. 又因为K为r×s阶矩阵,则有r(K)≤min{r,s}. 且由向量组B:b
1
,b
2
,…,b
r
能由向量组A:a
1
,a
2
,…,a
s
线性表示,则有r≤s,即min{r,s}=r. 综上所述,r≤r(K)≤r,即r(K)=r. 充分性:已知r(K)=r,向量组A线性无关,r(A)=s,因此A的行最简矩阵为[*],存在可逆矩阵P使 [*] 于是有PB=PAK=[*],由矩阵秩的性质 [*] 令即r(B)=r(K)=r,因此向量组B线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/jLT4777K
0
考研数学三
相关试题推荐
革命统一战线的根本问题是()。
我们党领导人民进行社会主义建设,有改革开,放前和改革开放后两个历史时期,这两个历史时期
在社会主义市场经济条件下,市场主体必须通过向社会和他人提供一定数量和质量的产品,建立满足社会和他人需求的良好信誉,即通过为社会和他人服务并为其所接受以实现自己的利益。这说明()。
“人的思维是否具有真理性,这并不是一个理论的问题,而是一个实践的问题。人应该在实践中证明自己思维的真理性,即自己思维的现实性和力量,亦即自己思维的此岸性。”这一论断说明了()。
建设现代化经济体系是党中央从党和国家事业全局出发,着眼于实现“两个一百年”奋斗目标、顺应中国特色社会主义进入新时代的新要求作出的重大决策部署,既是一个重大理论命题,又是一个重大实践课题。因为形成现代化经济体系()。
党的十九届二中全会审议通过了《中共中央关于修改宪法部分内容的建议》。这次修改宪法的总体要求是,高举中国特色社会主义伟大旗帜,全面贯彻党的十九大精神,坚持以马克思列宁主义、毛泽东思想、邓小平理论、“三个代表”重要思想、科学发展观、习近平新时代中国特色社会主义
二次型f(x1,x2,x3)=x12+4x22+3x32-4x1x2+2x1x3+8x2x3的秩等于()。
证明下列关系式:A∪B=A∪(B-A)=(A-B)∪(B-A)∪(A∩B).
设向量组α1,α2,…,αs线性无关,作线性组合β1=α1+μ1αs,β2=α2+μ2αs,…,βs-1=αs-1+μs-1αs,则向量组β1,β2,…,βs-1线性无关,其中s≥2,μi为任意实数.
求曲线x2+z2=10,y2+z2=10在点(1,1,3)处的切线和法平面方程.
随机试题
按风险后果分类可以将风险分为()。
A、脑震荡B、脑挫裂伤C、颅底骨折D、颅盖骨折E、硬脑膜外血肿开放性颅脑损伤是
缺铁性贫血的改变顺序是
在质量控制中,排列图是用来( )的。
按设备对现场信息采集的原理,火灾探测器分为()。
皮亚杰提出主体通过()形式来实现对客体的适应。
关于法律溯及力,下列哪些选项是不正确的?()
有些教员也拥有了私人汽车,所有的大款都有私人汽车,因此,有些教员也是大款。以下哪个推理具有和上述推理最为类似的结构?()
下列关于E-R模型的叙述中,哪一条是不正确的?
Whomostlikelyisthespeakeraddressing?
最新回复
(
0
)