首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
以y1=excos2x,y2=exsin2x与y3=e-x为线性无关特解的三阶常系数齐次线性微分方程是
以y1=excos2x,y2=exsin2x与y3=e-x为线性无关特解的三阶常系数齐次线性微分方程是
admin
2016-07-21
32
问题
以y
1
=e
x
cos2x,y
2
=e
x
sin2x与y
3
=e
-x
为线性无关特解的三阶常系数齐次线性微分方程是
选项
A、y’’’+y’’+3y’+5y=0.
B、y’’’一y’’+3y’+5y=0.
C、y’’’+y’’一3y’+5y=0.
D、y’’’一y’’一3y’+5y=0.
答案
B
解析
线性无关特解y
1
=e
x
cos2x,y
2
=e
x
sin2x与y
3
=e
-x
对应于特征根λ
1
=1+2i,λ
2
=1—2i与λ
3
=一1,由此可得特征方程是(λ一1—2i)(λ一1+2i)(λ+1)=0
λ
3
一λ
2
+3λ+5=0.由此即知以y
1
=e
x
cos2x,y
2
=e
x
sin2x与y
3
=e
-x
为线性无关特解的三阶常系数齐次线性微分方程是y’’’一y’’+3y’+5y=0.应选B.
转载请注明原文地址:https://kaotiyun.com/show/jcbD777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 C纵观图形可发现各图形均为封闭图形,故选C。
《读书报》准备推出一种订报有奖的促销活动。如果你订了下半年的《读书报》的话,你就町以免费获赠下半年的《广播电视周报》。推出这个活动之后,报社每天都在统计新订户的情况,结果非常失望。以下哪项如果为真,最能够解释这项促销活动没能成功的原因?()
减少污染排放、改善环境质量,必须加大监管执法力度,采取有效措施,严厉查处各类环境违法行为,完善区域现批、行业现批管理,是加强环境保护、改善宏观调控的重要手段。强化典型案件挂牌督办,是解决突出环境违法案件的有效形式。加快推进污染源在线监控。这是控制污染的有效
研究人员在大肠杆菌外面缠裹了一种叫作B氨基酯的人工合成聚合物,形成一种“细菌胶囊”。随后,将其插入抵抗肺炎球菌的蛋白质疫苗。实验证明,这种胶囊能被动或主动地瞄准一种特殊免疫细胞,它能提升人体免疫反应,具有很强的抗肺炎球菌疾病的能力。研究人员指出,这种胶囊疫
组织激励很重要,要做好组织激励有不同的方法,以下是影响组织激励的几个主要因素:(1)工作环境;(2)薪酬福利;(3)领导认可;(4)成就感;(5)组织文化;(6)职业发展。请从中选择两个因素并说明理由。请考生再补充一个针对飞机上使用手机这一情况的相应观
甲乙两地居民的恩格尔系数分别为30%和32%,这可能表明()。
现要在一块长25公里、宽8公里的长方形区域内设置哨塔,每个哨塔的监视半径为5公里。如果要求整个区域内的每个角落都能被监视到,则至少需要设置多少个哨塔?
从抛物线y=x2—1的任意一点P(t,t2—1)引抛物线y=x2的两条切线,(Ⅰ)求这两条切线的切线方程;(Ⅱ)证明该两条切线与抛物线y=x2所围面积为常数.
累次积分=________.
已知η是非齐次线性方程组Aχ=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次线性方程组Aχ=0的基础解系.证明:(Ⅰ)η,η+ξ1,η+ξ2,…,η+ξn-r,是Aχ=b的n-r+1个线性无关解;(Ⅱ)方程组Aχ=b的任一个解均可由η
随机试题
半解冻状态的肉比较有利于________。
在污水处理时基本都要有物理处理过程,因该过程能通过一定的反应除去水中的悬浮物。()
关于早、晚反应组织,错误的是
A.骨的缺血性坏死B.血管损伤C.神经损伤D.骨的延迟愈合E.骨筋膜室综合征距骨骨折易引起
关于苯二氮革类的叙述,哪项是错误的
A、 B、 C、 D、 E、 D
根据最新监管政策,商业银行对个人住房贷款客户的借款利率和首付款比例,应根据()区别核定。
中国资产阶级民主革命是由以孙中山为首的资产阶级革命派首先发动的,资产阶级革命派的骨干是
Sometwentyyearsago,theperformanceofgirlsandboysinclasswascompared.Boys【B1】______betterinexams,sovariousmeasur
HowYourLanguageAffectsYourWealthandHealth[A]Doesthelanguagewespeakdeterminehowhealthyandrichwewillbe?Newre
最新回复
(
0
)