首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:当χ>0时,(χ2-1)lnx≥(χ-1)2.
证明:当χ>0时,(χ2-1)lnx≥(χ-1)2.
admin
2017-09-15
68
问题
证明:当χ>0时,(χ
2
-1)lnx≥(χ-1)
2
.
选项
答案
令φ(χ)=(χ
2
-1)lnχ-(χ-1)
2
,φ(1)=0. φ′(χ)=2χlnχ-χ+2-[*],φ′(1)=0. φ〞(χ)=2lnχ+1+[*],φ〞(1)=2>0. [*] 则[*] 故χ=1为φ〞(χ)的极小值点,由其唯一性得其也为最小值点,而最小值为φ〞(1)=2>0,故φ〞(χ)>0(χ>0). [*] 故χ=1为φ(χ)的极小值点,也为最小值点,而最小值为φ(1)=0, 所以χ>0时,φ(χ)≥0,即(χ
2
-1)lnχ≥(χ-1)
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/jpt4777K
0
考研数学二
相关试题推荐
对离散型情形证明:(1)E(X+Y)=EX+EY.(2)EXY=EXEY
设区域D是由直线y=x-1,y=x+1,x=2及坐标轴围成的区域(图3-8).(X,Y)服从区域D上的均匀分布.求条件密度函数fY|X(y|x)和fX|Y(x|y).
若A是n阶实对称矩阵,证明:A2=O与A=O可以相互推出.
设A,B均为n阶矩阵,若E-AB可逆,证明E-BA可逆.
设f(x)为单调函数且二阶可导,其反函数为g(x),又f(1)=2,,f〞(1)=1.求gˊ(2),g〞(2).
设f(x)在区间[a,b]上连续,在(a,b)内可导,证明:在(a,b)内至少存在一点ε,使得
用拉格朗日定理证明:若,且当x>0时,fˊ(x)>0,则当x>0时,f(x)>0.
设,证明fˊ(x)在点x=0处连续.
证明:函数在(0,0)点连续,fx(0,0),fy(0,0)存在,但在(0,0)点不可微.
求下列各函数的二阶导数:(1)y=ln(1+x2)(2)y=xlnx(3)y=(1+x2)arctanx(4)y=xex2
随机试题
课程目标
复方对乙酰氨基酚片的正常情况下的外观性状为
A.了解胆囊浓缩和收缩功能B.了解胆囊切除术后胆道情况C.明确梗阻性黄疸的原因和部位D.明确肝内病变的范围和性质E.可同时显示胆道和胰管情况
宋代建筑方面的重要术书是()。
一、注意事项 1.申论考试,与传统作文考试不同,是对分析驾驭材料的能力、解决问题能力、语言表达能力的测试。 2.作答参考时限:阅读材料40分钟,作答110分钟。 3.仔细阅读给定的资料,按照后面提出的“申论要求”依次作答。二、给定资料
关于柳氮磺吡啶治疗克罗恩病的叙述,错误的是
在平面直角坐标系中,直线2x+y-2=0关于直线x+y+4=0对称的直线方程为()
数据库系统中,存储在计算机内有结构的数据集合称为()。
______thatmyheadhadcleared,mybrainwasalsobeginningtoworkmuchbetter.
DisplaystokeepaneyeonANewdisplaysarestartingtoappearinconsumerdevices,offeringadvantagesovertoday’sliquid-
最新回复
(
0
)