首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶实对称矩阵,证明:A可逆的充要条件是存在n阶实矩阵B,使得AB+BTA是正定阵.
设A是n阶实对称矩阵,证明:A可逆的充要条件是存在n阶实矩阵B,使得AB+BTA是正定阵.
admin
2017-06-14
51
问题
设A是n阶实对称矩阵,证明:A可逆的充要条件是存在n阶实矩阵B,使得AB+B
T
A是正定阵.
选项
答案
必要性,A可逆,记A的逆矩阵为A
-1
,取B=A
-1
(要证存在n阶实矩阵B,应从已知条件中去找),则有 AB+B
T
A=AA
-1
+(A
-1
)
T
A=AA
-1
+(A
-1
)
T
A
T
=2E, 2E是正定阵,故存在n阶实矩阵B=A
-1
,使得AB+B
T
A是正定阵. 充分性.已知存在n阶实矩阵,使得AB+B
T
A正定,由定义,对于任给的ξ≠0,有ξ
T
(AB+B
T
A)ξ=ξ
T
ABξ+ξ
T
B
T
Aξ=(Aξ)
T
(Bξ)+(Bξ)
T
Aξ>0 则对于任给的ξ≠0,应有Aξ≠0,即AX=0唯一零解, 故得证A是可逆阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/jpu4777K
0
考研数学一
相关试题推荐
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y"+P(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是
设随机变量X服从正态分布N(μ,σ2)(σ>0),且二次方程y2+4y+X=0无实根的概率为1/2,则μ=___________.
设对(I)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
已知3阶矩阵A的第一行是(a,6,c),a,b,c不全为零,矩阵(k为常数),且AB=0,求线性方程组Ax=0的通解.
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.A2;
已知向量组(I):α1,α2,α3;(II):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为r(I)=r(Ⅱ)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记α=,β=若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时),已知X和Y的联合分布函数为F(x,y)=(Ⅰ)X和Y是否独立?(Ⅱ)求两个部件的寿命都超过100小时的概率a.
随机试题
A、It’sinterestingandeasy.B、It’smeaningfulbutboring.C、It’sverystressfulandboring.D、It’ssatisfyingbutneedslong-ti
企业在设计产品成本核算业务会计制度时,必须设计成本核算对象。在下列各项中,可以作为成本核算对象的有()
简述如何正确对待竞争。
A.升高B.降低C.先高后低D.先低后高低血容量休克时患者的心率变化是
提供社区初级保健的主要机构是
人们根据一定医德标准,通过社会舆论和内心信念,对医务人员或医疗卫生部门的行为和活动所做的善恶判断,称为
管道用支架的种类中,限制管道径向位移,但允许轴向位移的支架是()。
我国某品牌智能手机通过国际市场采购所有零配件,首创了发烧友参与开发改进的模式。该手机的最新产品无论是外观款式还是硬件配置均改变了传统设计思路。据此完成关于该品牌手机产销模式的叙述,正确的是()。
封面:正文:书籍
A、Hedidn’tlikephysicsanymore.B、Hiseyesightwastoopoor.C、Physicswastoohardforhim.D、Hehadtoworktosupporthims
最新回复
(
0
)