首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,a1,a2为A的分别属于特征值-1,1的特征向量,向量a3满足 Aa3=a2+a3, (Ⅰ)证明a1,a2,a3线性无关; (Ⅱ)令P=(a1,a2,a3),求P-1AP.
设A为3阶矩阵,a1,a2为A的分别属于特征值-1,1的特征向量,向量a3满足 Aa3=a2+a3, (Ⅰ)证明a1,a2,a3线性无关; (Ⅱ)令P=(a1,a2,a3),求P-1AP.
admin
2013-08-02
41
问题
设A为3阶矩阵,a
1
,a
2
为A的分别属于特征值-1,1的特征向量,向量a
3
满足
Aa
3
=a
2
+a
3
,
(Ⅰ)证明a
1
,a
2
,a
3
线性无关;
(Ⅱ)令P=(a
1
,a
2
,a
3
),求P
-1
AP.
选项
答案
(Ⅰ)假设a
1
,a
2
,a
3
线性相关,则a
3
可由a
1
,a
2
线性表出, 可设a
3
=k
1
a
1
+k
2
a
2
,其中k
1
,k
2
不全为0, 否则由等式Aa
3
=a
2
+a
3
得到a
2
=0,不符合题设. 因为a
1
,a
2
为矩阵A的分别属于特征值-1,1的特征向量,所以Aa
1
=-a
1
,Aa
2
=a
2
, 则Aa
3
=A(k
1
a
1
+k
2
a
2
)=-k
1
a
1
+k
2/sub>a
2
=a
2
+k
1
a
1
k
2
a
2
. 等式中a
1
,a
2
的对应系数相等,即[*] 显然此方程组无解,故假设不成立,从而可知a
1
,a
2
,a
3
线性无关. (Ⅱ)因为a
1
,a
2
,a
3
线性无关,所以矩阵P=(a
1
,a
2
,a
3
)可逆, 由于AP=A(a
1
,a
2
,a
3
)=(-a
1
,a
2
,a
2
+a
3
)=(a
1
,a
2
,a
3
)[*] 等式两边同时左乘矩阵P的逆矩阵P
-1
,可得P
-1
AP=P
-1
P[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/MP54777K
0
考研数学一
相关试题推荐
[*]
讨论曲线y=41nx+k与y=4x+ln4x的交点个数.
y=y(x)是微分方程y′—xy=满足y(1)=特解.求y(x).
(2006年试题,23)设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解.(I)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
[2010年]设函数y=f(x)由参数方程(t>一1)所确定,其中Ψ(t)具有二阶导数,且Ψ(1)=5/2,Ψ′(1)=6.已知,求函数Ψ(t).
[2002年]设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数k,必有().
设区域D={(x,y)|x2+y2≤4,x≥0,y≥0},f(x)为D上的正值连续函数,a,b为常数,则
微分方程ydx+(x-3y2)dy=0满足条件的解为y=_______.
(16年)已知动点P在曲线y=x3上运动,记坐标原点与点P间的距离为l.若点P的横坐标对时间的变化率为常数v0,则当点P运动到点(1,1)时,l对时间的变化率是_______.
如果函数在x=0处有连续导数,求λ的取值范围.
随机试题
在《克洛德·格》中,与同名主人公形成鲜明对比的人物是()
女性,70岁,右下唇皮肤肿物不断增大半年,直径约1.5cm大小,半月来破溃出血。病理检查肿瘤细胞异型性明显,角化珠形成,浸润肌肉组织。符合该患者诊断的是
高血压合并心肌梗死宜选用
阵发性室上性心动过速发作时首选
因海关关员的责任造成被查验货物损坏的,进出口货物收发货人或其代理人可以要求海关赔偿。但下列情况海关将不予赔偿,包括()。
操作系统的主要作用是为用户提供使用计算机的接口,管理计算机的资源。()
有人说“不怕做错事,就怕站错队”,对于这种说法你怎么理解?假如单位正副两位领导不和,经常同时分配给你互相矛盾的工作,你怎么处理?
请阅读有关材料运用历史唯物主义的有关原理回答问题:材料1爱尔维修说:“我们在人和人之间所见到的精神上的差异,是由于他们所处的不同的环境,由于他们所受的不同的教育所致。”“人是环境的产物”。“造成各个民族的不幸的,并不是人们的卑劣、邪恶和
随机变量列X1,X2,…,Xn,…服从大数定律,其成立的充分条件为随机变量列X1,X2,…,Xn…()
Thefollowingisapassageaboutinventorsandtheirinventions.Newinventionsareappearingeverydaytomakeourlivesea
最新回复
(
0
)