首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,a1,a2为A的分别属于特征值-1,1的特征向量,向量a3满足 Aa3=a2+a3, (Ⅰ)证明a1,a2,a3线性无关; (Ⅱ)令P=(a1,a2,a3),求P-1AP.
设A为3阶矩阵,a1,a2为A的分别属于特征值-1,1的特征向量,向量a3满足 Aa3=a2+a3, (Ⅰ)证明a1,a2,a3线性无关; (Ⅱ)令P=(a1,a2,a3),求P-1AP.
admin
2013-08-02
38
问题
设A为3阶矩阵,a
1
,a
2
为A的分别属于特征值-1,1的特征向量,向量a
3
满足
Aa
3
=a
2
+a
3
,
(Ⅰ)证明a
1
,a
2
,a
3
线性无关;
(Ⅱ)令P=(a
1
,a
2
,a
3
),求P
-1
AP.
选项
答案
(Ⅰ)假设a
1
,a
2
,a
3
线性相关,则a
3
可由a
1
,a
2
线性表出, 可设a
3
=k
1
a
1
+k
2
a
2
,其中k
1
,k
2
不全为0, 否则由等式Aa
3
=a
2
+a
3
得到a
2
=0,不符合题设. 因为a
1
,a
2
为矩阵A的分别属于特征值-1,1的特征向量,所以Aa
1
=-a
1
,Aa
2
=a
2
, 则Aa
3
=A(k
1
a
1
+k
2
a
2
)=-k
1
a
1
+k
2/sub>a
2
=a
2
+k
1
a
1
k
2
a
2
. 等式中a
1
,a
2
的对应系数相等,即[*] 显然此方程组无解,故假设不成立,从而可知a
1
,a
2
,a
3
线性无关. (Ⅱ)因为a
1
,a
2
,a
3
线性无关,所以矩阵P=(a
1
,a
2
,a
3
)可逆, 由于AP=A(a
1
,a
2
,a
3
)=(-a
1
,a
2
,a
2
+a
3
)=(a
1
,a
2
,a
3
)[*] 等式两边同时左乘矩阵P的逆矩阵P
-1
,可得P
-1
AP=P
-1
P[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/MP54777K
0
考研数学一
相关试题推荐
已知矩阵A=(Ⅰ)求A99;(II)设3阶矩阵B=(a1,a2,a3)满足B2=BA.记B100=(β1,β2,β3),将β1,β2,β3分别表示为a1,a2,a3的线性组合.
(93年)设y=sin[f(x2)],其中f具有二阶导数,求
设函数f(x)=lnx+1/x求f(x)的最小值;
计算曲线y=ln(1一x2)上相应于0≤x≤的一段弧的长度.
(2003年试题,一)y=2x的麦克劳林公式中xn项的系数是__________.
设函数f(x)在x=0的某邻域内具有二阶连续导数。且f(0)≠0,f’(0)≠0,f"(0)≠0.证明:存在唯一的一组实数λ1,λ2,λ3,使得当h→0时,λ1f(h)+λ2f(2h)+λ3f(3h)-f(0)是比h2高阶的无穷小.
(2012年试题,一)设区域D由曲线围成,则().
[2002年]设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数k,必有().
求点的偏导数.
随机试题
科学管理理论主张重新设计工作流程,对员工与工作任务之间的关系进行系统性的研究,因此提出了()
临床上抢救急性肺水肿给患者吸氧时,常在湿化瓶中加酒精的目的是
选择无尖牙作为人工后牙的主要优点是
平屋顶防水构造方案中,具有一定的延伸性,能适应温度、振动、不均匀沉陷等因素产生的变形,能承受一定的水压,整体性好的方案是()。
()不可以申请开立一般存款账户。
股票的内在价值主要取决于( )。
物业管理企业的办公费包括()。
一位旅游者看中了饭店客房内配备的一件漆器烟具,找到导游员帮忙,想买下作纪念,导游员可以()。
胡立劳动合同,应当遵循()的原则。
Comparedto______intheoffice,Katefounditmoreexcitingtoworkasateacher.
最新回复
(
0
)