首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,a1,a2为A的分别属于特征值-1,1的特征向量,向量a3满足 Aa3=a2+a3, (Ⅰ)证明a1,a2,a3线性无关; (Ⅱ)令P=(a1,a2,a3),求P-1AP.
设A为3阶矩阵,a1,a2为A的分别属于特征值-1,1的特征向量,向量a3满足 Aa3=a2+a3, (Ⅰ)证明a1,a2,a3线性无关; (Ⅱ)令P=(a1,a2,a3),求P-1AP.
admin
2013-08-02
64
问题
设A为3阶矩阵,a
1
,a
2
为A的分别属于特征值-1,1的特征向量,向量a
3
满足
Aa
3
=a
2
+a
3
,
(Ⅰ)证明a
1
,a
2
,a
3
线性无关;
(Ⅱ)令P=(a
1
,a
2
,a
3
),求P
-1
AP.
选项
答案
(Ⅰ)假设a
1
,a
2
,a
3
线性相关,则a
3
可由a
1
,a
2
线性表出, 可设a
3
=k
1
a
1
+k
2
a
2
,其中k
1
,k
2
不全为0, 否则由等式Aa
3
=a
2
+a
3
得到a
2
=0,不符合题设. 因为a
1
,a
2
为矩阵A的分别属于特征值-1,1的特征向量,所以Aa
1
=-a
1
,Aa
2
=a
2
, 则Aa
3
=A(k
1
a
1
+k
2
a
2
)=-k
1
a
1
+k
2/sub>a
2
=a
2
+k
1
a
1
k
2
a
2
. 等式中a
1
,a
2
的对应系数相等,即[*] 显然此方程组无解,故假设不成立,从而可知a
1
,a
2
,a
3
线性无关. (Ⅱ)因为a
1
,a
2
,a
3
线性无关,所以矩阵P=(a
1
,a
2
,a
3
)可逆, 由于AP=A(a
1
,a
2
,a
3
)=(-a
1
,a
2
,a
2
+a
3
)=(a
1
,a
2
,a
3
)[*] 等式两边同时左乘矩阵P的逆矩阵P
-1
,可得P
-1
AP=P
-1
P[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/MP54777K
0
考研数学一
相关试题推荐
[2013年]设二次型f(x1,x2,x3)=2(a1x1+a2x2+a33x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22.
(93年)设y=sin[f(x2)],其中f具有二阶导数,求
(1989年)已知
设f(x)=求∫03f(x一2)dx.
[2010年]设函数y=f(x)由参数方程(t>一1)所确定,其中Ψ(t)具有二阶导数,且Ψ(1)=5/2,Ψ′(1)=6.已知,求函数Ψ(t).
设f(x)是区间[0,+∞)上具有连续导数的单调增函数,且f(0)=1。对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周生成一旋转体。若该旋转体的侧面积在数值上等于其体积的2倍,求函数f(x)的表达式。
(1999年)设函数f(χ)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f′(0)=0,证明:在开区间(-1,1)内至少存在一点ξ,使f〞(ξ)=3.
[2002年]设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数k,必有().
(00年)曲线的斜渐近线方程为______.
设z=z(x,y)是由方程f(y-x,yz)=0所确定的隐函数,其中函数f对各个变量具有连续的二阶偏导数,求
随机试题
胰岛素受体广泛分布于
患儿,女性,10岁。因双眼睑浮肿,少尿2天就诊,初步诊断为肾病综合征。查体:双下肢水肿明显。实验室检查:血浆白蛋白25g/L,尿蛋白定性(+++)。目前对该患儿最重要的护理措施是
中国保监会在收到申请材料后,应当自受理设立保险经纪机构申请之日起( )内进行初审。
下列关于我国商业银行不良资产成因的说法,错误的是()。
下列关于小规模纳税人初次购买增值税税控系统设备的处理,表述正确的是()。
From:PaulaWashingtonTo:ClaraNashSubject:OrderDearMr.Nash,MynameisPaulaWashingtonandI’mtheownerofth
根据《全国人口普查条例》和《国务院关于开展第六次全国人口普查的通知》,我国以2010年11月1日零时为标准时点进行了第六次全国人口普查。目前我国全国总人口为1370536875人。其中普查登记的大陆31个省、自治区、直辖市和现役军人的人口共1339724
新中国发展国民经济第一个五年计划的主要规定是()。
下面关于数据库数据模型的说法中,哪一个是错误的?
Daylightsavingtimewasinstitutedtoincreaseproductivity.
最新回复
(
0
)