首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)有二阶连续导数,且满足xy"+3xy’2=1-e-x. (1)若f(x)在x=c(c≠0)处取得极值,证明f(c)是极小值. (2)若f(x)在x=0处取得极值,问f(0)是极小值还是极大值? (3)若f(0)=f’(0)=0,证
设y=f(x)有二阶连续导数,且满足xy"+3xy’2=1-e-x. (1)若f(x)在x=c(c≠0)处取得极值,证明f(c)是极小值. (2)若f(x)在x=0处取得极值,问f(0)是极小值还是极大值? (3)若f(0)=f’(0)=0,证
admin
2018-04-18
48
问题
设y=f(x)有二阶连续导数,且满足xy"+3xy
’2
=1-e
-x
.
(1)若f(x)在x=c(c≠0)处取得极值,证明f(c)是极小值.
(2)若f(x)在x=0处取得极值,问f(0)是极小值还是极大值?
(3)若f(0)=f’(0)=0,证明x>0时,
.
选项
答案
(1)因f(c)是极值,故y’(c)=0,代入方程,得 [*] 从而f(c)是极小值. (2)当x≠0时,[*]由y’,y”连续及y’(0)=0,有 [*] 从而f(0)是极小值. (3)当x>0时,[*] 令φ(x)=x一1+e
-x
,有φ’(x)=1—e
-x
>0(x>0),而φ(0)=0,所以φ(x)>φ(0)=0,即[*]从而f”(x)<1.由泰勒公式,[*]∈(0,x),使 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/jtk4777K
0
考研数学二
相关试题推荐
设A为n阶非奇异矩阵,a为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
设A为n阶非零矩阵,E为n阶单位矩阵.若A3=0,则
A是n阶矩阵,且A3=0,则().
考察一元函数f(x)的下列四条性质:①f(x)在区问[a,b]上连续②f(x)在区间[a,b]上可积③f(x)在区间[a,b]上存在原函数④f(x)在区间[a,b]上可导若用P→Q表示可由性质P推出性质Q,则有().
若3a2-5b<0,则方程x5+2ax3+3bx+4c=0().
设n阶方程A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…γn),记向量组(I):α1,α2,…,αn,(Ⅱ):β1,β2,…,βn,(Ⅲ):γ1,γ2,…,γn,如果向量组(Ⅲ)线性相关,则().
(I)利用行列式性质,有[*]
在中午12点整,甲船以6km/h的速度向东行驶,乙船在甲船之北16km处以8km/h的速度向南行驶,求下午1点整两船之间距离的变化速度.
讨论f(x,y)=在点(0,0)处的连续性、可偏导性及可微性.
设函数.(1)求f(x)的最小值;(2)设数列{xn}满足,证明存在,并求此极限.
随机试题
电阻定律的数学表达式为()。
(2010年4月)《民法通则》规定“涉外合同的当事人可以选择处理合同争议所适用的法律,涉外合同当事人没有选择的,可以适用与合同有最密切联系国家的法律”这是一条_____。
腹部闭合性损伤的临床表现中,对诊断实质脏器损伤有价值的是
盐酸氯丙嗪与三氯化铁试液反应显红色,是因为发生了
闭合性气胸胸膜腔内压接近或略超过大气压,测定时不可为负压。()
某县破获一抢劫团伙,涉嫌多次入户抢劫,该县法院审理后认为,该团伙中只有主犯赵某可能被判处无期徒刑。关于该案的移送管辖,下列哪些选项是正确的?(2014年卷二66题,多选)
甲公司评估战略备选方案时,主要考虑选择的战略是否发挥了企业优势,克服了劣势,是否利用了机会,将威胁削弱到最低程度,是否有助于企业实现目标。甲公司评估战略备选方案使用的标准是()。(2014年)
素质教育的时代特征是()。
张先生在某个闰年中的生日是某个月的第四个也是最后一个星期五,他生日的前一个和后一个月正好也只有4个星期五。问当年的六一儿童节是星期几?
[2005年MBA真题](1)一(2)题基于以下题干:宏达山钢铁公司由五个子公司组成。去年,其子公司火龙公司试行与利润挂钩的工资制度。其他子公司则维持原有的工资制度。结果,火龙公司的劳动生产率比其他子公司的平均劳动生产率高出13%。因此,在宏达山钢铁公司实
最新回复
(
0
)