首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
构造正交矩阵Q,使得QTAQ是对角矩阵
构造正交矩阵Q,使得QTAQ是对角矩阵
admin
2018-11-20
31
问题
构造正交矩阵Q,使得Q
T
AQ是对角矩阵
选项
答案
(1)先求特征值 [*] A的特征值为0,2,6. 再求单位正交特征向量组 属于0的特征向量是齐次方程组AX=0的非零解, [*] 得AX=0的同解方程组 [*] 求得一个非零解为(1,1,一1)
T
,单位化得 [*] 属于2的特征向量是齐次方程组(A一2E)X=0的非零解, [*] 得AX=0的同解方程组 [*] 求得一个非零解为(1,一1,0)
T
,单位化得 [*] 属于6的特征向量是齐次方程组(A一6E)X=0的非零解, [*] 得AX=0的同解方程组 [*] 求得一个非零解为(1,1,2)
T
,单位化得 [*] 作正交矩阵 Q=(γ
1
,γ
2
,γ
3
),则Q
T
AQ=Q
-1
AQ=[*] (2)先求特征值 |λE—A|=[*]=(λ一1)
2
(λ一10). A的特征值为1,1,10. 再求单位正交特征向量组 属于1的特征向量是齐次方程组(A—E)X=0的非零解, [*] 得(A—E)X=0的同解方程组x
1
+2x
2
—2x
3
=0, 显然α
1
=(0,1,1)
T
是一个解.第2个解取为α
2
=(c,一1,1)
T
(保证了与α
1
的正交性!),代入方程求出c=4,即α
2
=(4,一1,1)
T
. 令γ
1
=α
1
/‖α
1
‖=[*],γ
2
=α
2
/‖α
2
‖=[*] 再求出属于10的特征向量是齐次方程组(A一10E)X=0的非零解(1,2,一2)
T
,令 γ
3
=α
3
/‖α
3
‖=(1,2,一2)
T
/3. 作正交矩阵Q=(γ
1
,γ
2
,γ
3
). 则 Q
T
AQ=Q
-1
AQ=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/jwW4777K
0
考研数学三
相关试题推荐
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=一ξ1+2ξ2+2ξ3,Aξ2=2ξ1一ξ2一2ξ3,Aξ3=2ξ1一2ξ2一ξ3.求|A*+2E|.
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=一ξ1+2ξ2+2ξ3,Aξ2=2ξ1一ξ2一2ξ3,Aξ3=2ξ1一2ξ2一ξ3.求矩阵A的全部特征值;
设矩阵为A*对应的特征向量.判断A可否对角化.
设相似于对角阵,求:A100.
设相似于对角阵,求:a及可逆阵P,使得P一1AP=A,其中A为对角阵;
设有三个线性无关的特征向量,则a=________.
设n阶矩阵A满足A2+2A一3E=0.求:(A+4E)一1.
设,求B一1.
设求:AB一BA.
设为正定矩阵,令P=求PTCP;
随机试题
马克思认为文学的高度发展有时不是出现在经济繁荣时期,而是出现在经济落后时期,这种现象表明了()
下列各项中不属于凝血疾病典型症状的是
关于船舶担保物权及针对船舶的请求权的表述,下列哪些选项是正确的?(2012年卷三76题)
行政监督部门对投诉处理中需要的费用,全部由()支出。
按照我国现行规定,各种经营性固定资产投资项目必须实行资本金制度,但( )不实行资本金制度。
工程竣工验收合格之日起15日内,()应向工程所在地的县级以上地方人民政府建设行政主管部门备案。
226,197,170,(),122
下列词语中划线的字,读音全都正确的一组是()。
地役权的设立时间是()
Youwillhearfivedifferentpeopletalkingaboutajob-huntinglecturetheyhavejustattended.Foreachextractthereare
最新回复
(
0
)