首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
构造正交矩阵Q,使得QTAQ是对角矩阵
构造正交矩阵Q,使得QTAQ是对角矩阵
admin
2018-11-20
28
问题
构造正交矩阵Q,使得Q
T
AQ是对角矩阵
选项
答案
(1)先求特征值 [*] A的特征值为0,2,6. 再求单位正交特征向量组 属于0的特征向量是齐次方程组AX=0的非零解, [*] 得AX=0的同解方程组 [*] 求得一个非零解为(1,1,一1)
T
,单位化得 [*] 属于2的特征向量是齐次方程组(A一2E)X=0的非零解, [*] 得AX=0的同解方程组 [*] 求得一个非零解为(1,一1,0)
T
,单位化得 [*] 属于6的特征向量是齐次方程组(A一6E)X=0的非零解, [*] 得AX=0的同解方程组 [*] 求得一个非零解为(1,1,2)
T
,单位化得 [*] 作正交矩阵 Q=(γ
1
,γ
2
,γ
3
),则Q
T
AQ=Q
-1
AQ=[*] (2)先求特征值 |λE—A|=[*]=(λ一1)
2
(λ一10). A的特征值为1,1,10. 再求单位正交特征向量组 属于1的特征向量是齐次方程组(A—E)X=0的非零解, [*] 得(A—E)X=0的同解方程组x
1
+2x
2
—2x
3
=0, 显然α
1
=(0,1,1)
T
是一个解.第2个解取为α
2
=(c,一1,1)
T
(保证了与α
1
的正交性!),代入方程求出c=4,即α
2
=(4,一1,1)
T
. 令γ
1
=α
1
/‖α
1
‖=[*],γ
2
=α
2
/‖α
2
‖=[*] 再求出属于10的特征向量是齐次方程组(A一10E)X=0的非零解(1,2,一2)
T
,令 γ
3
=α
3
/‖α
3
‖=(1,2,一2)
T
/3. 作正交矩阵Q=(γ
1
,γ
2
,γ
3
). 则 Q
T
AQ=Q
-1
AQ=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/jwW4777K
0
考研数学三
相关试题推荐
设二维非零向量α不是二阶方阵A的特征向量.证明α,Aα线性无关;
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=一ξ1+2ξ2+2ξ3,Aξ2=2ξ1一ξ2一2ξ3,Aξ3=2ξ1一2ξ2一ξ3.求矩阵A的全部特征值;
设矩阵求可逆矩阵P,使得PTA2P为对角矩阵.
设A,B满足A*BA=2BA一8E,且A=,求B.
设求:AB一BA.
n阶矩阵A经过若干次初等变换化为矩阵B,则().
设为正定矩阵,令P=证明:D=BA一1BT为正定矩阵.
二次型f(x1,x2,x3)=x12+ax22+x32一4x1x2一8x1x3一4x2x3经过正交变换化为标准形5y12+by22一4y32,求:正交变换的矩阵Q.
随机试题
A.颊肌B.咬肌C.颏舌肌D.下颌舌骨肌E.胸锁乳突肌三叉神经支配()
Wouldyoueatabacon,lettuceandloveapplesandwich?Youprobablyhaveeatenmanyofthem.Loveapplewasthenameusedmany
检测。IgM抗体常用的方法是
为预防子宫脱垂的发生,下列健康指导不正确的内容是
A.pH2.2~3.6B.pH5.29~8.04C.pH2.6~7.0D.pH5.0~7.4E.pH5.2~8.6磷酸盐缓冲溶液的pH范围是
A.肾堂B.轩堂C.胸堂D.通关E.开关治疗牛外肾黄、五攒痛、后肢风湿宜选
设有一箱产品由三家工厂生产,第一家工厂生产总量的1/2,其他两厂各生产总量的1/4;又知各厂次品率分别为2%、2%、4%。现从此箱中任取一件产品,则取到正品的概率是()。
某建筑公司与某单位于2003年7月8日签订了教学楼承建合同,合同约定由于甲方责任造成总工期延误1天,甲方应向乙方补偿1万元,若乙方延误总工期1天,应扣除乙方工程款1万元;施工中实际工程量超过计划工程量10%以上时,超过部分按原单价的90%计算。双方对施工
Whatistheoccasionfortheman’sspeech?
ToliveintheUnitedStatestodayistogainanappreciationforDahrendorf’sassertionthatsocialchangeexistseverywhere.T
最新回复
(
0
)