首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
构造正交矩阵Q,使得QTAQ是对角矩阵
构造正交矩阵Q,使得QTAQ是对角矩阵
admin
2018-11-20
41
问题
构造正交矩阵Q,使得Q
T
AQ是对角矩阵
选项
答案
(1)先求特征值 [*] A的特征值为0,2,6. 再求单位正交特征向量组 属于0的特征向量是齐次方程组AX=0的非零解, [*] 得AX=0的同解方程组 [*] 求得一个非零解为(1,1,一1)
T
,单位化得 [*] 属于2的特征向量是齐次方程组(A一2E)X=0的非零解, [*] 得AX=0的同解方程组 [*] 求得一个非零解为(1,一1,0)
T
,单位化得 [*] 属于6的特征向量是齐次方程组(A一6E)X=0的非零解, [*] 得AX=0的同解方程组 [*] 求得一个非零解为(1,1,2)
T
,单位化得 [*] 作正交矩阵 Q=(γ
1
,γ
2
,γ
3
),则Q
T
AQ=Q
-1
AQ=[*] (2)先求特征值 |λE—A|=[*]=(λ一1)
2
(λ一10). A的特征值为1,1,10. 再求单位正交特征向量组 属于1的特征向量是齐次方程组(A—E)X=0的非零解, [*] 得(A—E)X=0的同解方程组x
1
+2x
2
—2x
3
=0, 显然α
1
=(0,1,1)
T
是一个解.第2个解取为α
2
=(c,一1,1)
T
(保证了与α
1
的正交性!),代入方程求出c=4,即α
2
=(4,一1,1)
T
. 令γ
1
=α
1
/‖α
1
‖=[*],γ
2
=α
2
/‖α
2
‖=[*] 再求出属于10的特征向量是齐次方程组(A一10E)X=0的非零解(1,2,一2)
T
,令 γ
3
=α
3
/‖α
3
‖=(1,2,一2)
T
/3. 作正交矩阵Q=(γ
1
,γ
2
,γ
3
). 则 Q
T
AQ=Q
-1
AQ=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/jwW4777K
0
考研数学三
相关试题推荐
设的一个特征值为λ1=2,其对应的特征向量为ξ1=判断A是否可对角化,若可对角化,求可逆矩阵P,使得P一1AP为财角矩阵.若不可对角化,说明理由.
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=一ξ1+2ξ2+2ξ3,Aξ2=2ξ1一ξ2一2ξ3,Aξ3=2ξ1一2ξ2一ξ3.求|A*+2E|.
设矩阵为A*对应的特征向量.判断A可否对角化.
设矩阵为A*对应的特征向量.求a,b及α对应的A*的特征值;
设矩阵若A有一个特征值为3,求a;
设n阶矩阵A满足A2+2A一3E=0.求:(A+2E)一1;
设四阶矩阵B满足BA一1=2AB+E,且A=,求矩阵B.
设AX=A+2X,其中A=,求X.
设A,B都是n阶矩阵,其中B是非零矩阵,且AB=0,则().
二次型f(x1,x2,x3)=x12+ax22+x32一4x1x2一8x1x3一4x2x3经过正交变换化为标准形5y12+by22一4y32,求:正交变换的矩阵Q.
随机试题
尿毒症中最罕见的电解质紊乱为A.高钙血症B.高磷血症C.低钙血症D.高镁血症E.高钾血症
通过与教育对象面对面的直接交流,传递健康信息和健康知识,帮助其改变相关态度的人际传播方式是()。
以下哪个为雌二醇的化学命名
全科医生的工作任务包括
取某药材碎片投于热水,水被染成红色;加酸变成黄色,再加碱液,仍变成红色
永安市人民政府土地管理部门欲出让一块位于该市北区的农民集体所有的土地,华天房地产开发公司正拟开发商品住宅小区而需用土地。请根据下列各问中给定的条件回答下列题。假设华天公司在取得土地使用权3年后与圣达公司达成土地使用权转让协议,下列有关转让行为的表述哪些
[2004年第94题]垂直风管与每层水平风管交接处的水平管段上设什么阀门为宜?
专题数据库产品制作中的产品测试,通常要对产品进行()的测试。
HowtoBondwithYourBossHavingagoodrelationshipwithyourbosshaspositiveimpactonyourcareer.Accordingtorese
Twosubstituteswereusedinafiercesoccergamelastnight.Theunderlinedpartmeans______.
最新回复
(
0
)