首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是一个n阶方阵,满足A2=A,R(A)=r,且A有两个不同的特征值. (Ⅰ)试证A可对角化,并求对角阵A; (Ⅱ)计算行列式|A-2E|.
设A是一个n阶方阵,满足A2=A,R(A)=r,且A有两个不同的特征值. (Ⅰ)试证A可对角化,并求对角阵A; (Ⅱ)计算行列式|A-2E|.
admin
2017-11-09
58
问题
设A是一个n阶方阵,满足A
2
=A,R(A)=r,且A有两个不同的特征值.
(Ⅰ)试证A可对角化,并求对角阵A;
(Ⅱ)计算行列式|A-2E|.
选项
答案
(Ⅰ)设λ是A的特征值,由于A
2
=A,所以λ
2
=λ,且A有两个不同的特征值,从而A的特征值为0和1. 又因为A
2
=A,即A(A-E)=O,故R(A)+R(A-E)=n 事实上,因为A(A-E)=O,所以 R(A)+R(A-E)≤n 另外,由于E-A同A-E的秩相同,则有 n=R(E)=R[(E-A)+A]≤R(A)+R(E-A)=R(A)+R(A-E), 从而R(A)+R(A-E)=n 当λ=时,因为R(A-E)=n-R(A)=n-r,从而齐次线性方程组(E-A)χ=0的基础解系含有r个解向量,因此,A属于特征值1有r个线性无关特征向量,记为η
1
,η
2
,…,η
r
. 当λ=0时,因为R(A)=r,从而齐次线性方程组(0.E-A)χ=0的基础解系含n-r个解向量.因此,A属于特征值0有n-r个线性无关的特征向量,记为η
r+1
,η
r+2
,…,η
n
. 于是η
1
,η
2
,…,η
n
是A的n个线性无关的特征向量,所以A可对角化,并且对角阵为 A=[*] (Ⅱ)令P=(η
1
,η
2
,η
3
,…,η
n
),则A=PAP
-1
,所以 |A-2E|=|PAP
-1
-2E|=|A-2E|=[*]=|-E
r
|-|-2E
n-r
| =(-1)
r
(-2)
n-r
-(一1)
n
2
n-r
.
解析
转载请注明原文地址:https://kaotiyun.com/show/kBX4777K
0
考研数学三
相关试题推荐
设f(z)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:(1)存在c∈(a,b),使得f(c)=0;(2)存在ξi∈(a,b)(i=1,2),且ξ1≠ξ2,使得f’(ξi)+f(ξi)
设函数y=y(x)由确定,则y=y(x)在x=ln2处的法线方程为________.
设由自动生产线加工的某种零件的内径X(单位:毫米)服从正态分布N(μ,1),内径小于10或大于12为不合格品,其余为合格产品,销售合格品获利,销售不合格产品亏损,已知销售利润T(单位:元)与销售零件的内径X有如下关系:问平均内径μ取何值时,销售一个零件
求曲线y=3一|x2一1|与x轴围成的封闭区域绕直线y=3旋转所得的旋转体的体积.
求极限
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明:对任意a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(A)g(1).
微分方程的通解是________.
已知y—y(x)是微分方程(x2+y2)dy一dy的任意解,并在y=y(x)的定义域内取x0,记y0一y(x0)。证明:y(x)<y0+一arctanx0;
已知fn(x)满足f’n(x)=fn(x)+xn-1ex(n为正整数),且fn(1)=,求函数项级数之和.
随机试题
不含手性碳原子的氨基酸是
背景资料:某新建排涝泵站装机容量为8×250kW,采用堤后式布置于某干河堤防背水侧,主要工程内容有:①泵室(电机层以下);②穿堤出水涵洞(含出口防洪闸);③进水前池;④泵房(电机层以上);⑤压力水箱(布置在堤脚外);⑥引水渠;⑦机组设备安装等。施
隧道监控量测时,测点应安设在距开挖面()m的范围内。
下列关于年金的个人所得税处理中,不正确的是()。
请认真阅读下文,并按要求作答。草原这次,我看到了草原。那里的天比别处的更可爱,空气是那么清鲜,天空是那么明朗,使我总想高歌一曲,表示我满心的愉快。在天底下,一碧千里,而并不茫茫。四面都有小丘,平地是绿的,小丘也是
简述蔡元培改革北大的教育实践。
下列犯罪中由过失构成的犯罪是()。
数据库设计包括两个方面的设计内容,它们是
ItwassaidbySirGeorgeBernardShawthat"EnglandandAmericaaretwocountriesseparatedbythesamelanguage."Myfirstp
TVLinkedtoLowerMarksA)Theeffectoftelevisiononchildrenhasbeendebatedeversincethefirstsetswereturnedon.Nowt
最新回复
(
0
)