首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(A)=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(A)=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
admin
2018-05-25
56
问题
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(A)=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
选项
答案
因为r(A)=r<n,所以齐次线性方程组AX=0的基础解系含有n-r个线性无关的解向量,设为ξ
1
,ξ
2
,…,ξ
n-r
. 设η
0
为方程组AX=b的一个特解, 令β
0
=η
0
,β
1
=ξ
1
+η
1
,β
2
=ξ
2
+η
2
,…,β
n-r
=ξ
n-r
+η
0
,显然β
0
,β
1
,β
2
,…,β
n-r
为方程组AX=b的一组解. 令k
1
β
1
+k
2
β
2
+…+k
n-r
β
n-r
=0,即 (k
1
,k
2
,…,k
n-r
)η
0
+k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0, 上式两边左乘A得(k
1
,k
2
,…,k
n-r
)b=0, 因为b为非零列向量,所以k
1
,k
2
,…,k
n-r
=0,于是k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0,注意到ξ
1
,ξ
2
,…,ξ
n-r
线性无关,所以k
1
=k
2
=…=k
n-r
=0,故β
0
,β
1
,β
2
,…,β
n-r
线性无关,即方程组AX=b存在由n-r+1个线性无关的解向量构成的向量组.设β
1
,β
2
,…,β
n-r+2
为方程组AX=b的一组线性无关解,令γ
1
=β
3
-β
1
,γ
2
=β
3
-β
1
,…,γ
n-r+1
=β
n-r+2
-β
1
,根据定义,易证γ
1
,γ
2
,…,γ
n-r+1
线性无关,又γ
1
,γ
2
,…,γ
n-r+1
为齐次线性方程组AX=0的一组解,即方程组AX=0含有n-r+1个线性无关的解,矛盾,所以AX=b的任意n-r+2个解向量都是线性相关的,所以AX=b的线性无关的解向量的个数最多为n-r+1个.
解析
转载请注明原文地址:https://kaotiyun.com/show/kEW4777K
0
考研数学三
相关试题推荐
试证明:曲线y=恰有三个拐点,且位于同一条直线上.
设X与Y为具有二阶矩的随机变量,且设Q(a,b)=E[y-(a+bX)]2,求a,b使Q(a,b)达到最小值Qmin,并证明:
设向量组α1=[a11,a21,an1]T,α2=[a12,a22,…,an2]T,…,αs=[a1s,a2s,ans]T.证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
已知3维向量组α1,α2,α3线性无关,则向量组α1-α2,α2-kα3,α3-α1也线性无关的充要条件是k_________.
已知矩阵相似.(1)求x与y;(2)求一个满足P-1AP=B的可逆矩阵P.
设三元线性方程组有通解求原方程组.
设A为n阶正定矩阵.证明:存在唯一正定矩阵H,使得A=H2.
已知A是m×n矩阵,m<n.证明:AAT是对称阵,并且AAT正定的充要条件是r(A)=m.
已知二次型f(x1,x2,x3)=4x22-3x32+4x1x2-4x1x3+8x2x3.(1)写出二次型f的矩阵表达式;(2)用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
随机试题
我国加入WTO以后,民族工业受到来自发达国家竞争对手的巨大冲击,各企业积极寻找应对措施。部分大型企业与中小型企业为了生存和发展,选择联合发展的道路,以应对强大的竞争对手,从而实现双赢。企业选择这种联合发展的道路体现出的经营战略特征是()
骨髓位于_______和_______内,分为_______和_______两类。
张某于2016年某大学药学专科毕业,毕业后选择到甲省乙药品批发企业,从事药品质量管理工作。张某可以参加哪一年的国家执业药师资格考试()
甲股份有限公司(以下简称“甲公司”)拟自建一条生产线,与该生产线建造相关的情况如下:(1)2020年1月2日,甲公司发行公司债券,专门用于筹集生产线建设资金。该公司债券为3年期分期付息、到期还本债券,面值为3000万元,票面年利率为5%,发行价格为306
尽管全球90%以上的节能灯在我国生产,但由于节能灯的价格是白炽灯的数倍,我国居民节能灯的使用率却不到20%,这不利于缓解我国电力供应紧张的局面。从材料看,缓解我国电力供应紧张局面需要()。①居民树立正确的消费理念②节能灯生产企业降低成本③政府倡导
下列激素属于HRF的是
刘女士在餐厅就餐时,左脸不幸被火锅烫伤。刘女士向餐厅索赔无果,遂提起民事诉讼。除要求餐厅赔偿治疗费外,她还主张精神损害赔偿。关于本案,下列说法正确的是()。(2014法单8)
Male-FemaleExpectationaboutMarriageThedifferencesbetweenmenandwomenclarifywhytheyhavedifferentexpectationsab
[A]Whattimeisitnow?[B]Howistheweathertoday?[C]WhatdoyouthinkofChina?[D]I’msure.[E]Ilikereadingbooks.[F]
Iaminchargeofwelcomingthe______.
最新回复
(
0
)