首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(A)=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(A)=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
admin
2018-05-25
65
问题
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(A)=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
选项
答案
因为r(A)=r<n,所以齐次线性方程组AX=0的基础解系含有n-r个线性无关的解向量,设为ξ
1
,ξ
2
,…,ξ
n-r
. 设η
0
为方程组AX=b的一个特解, 令β
0
=η
0
,β
1
=ξ
1
+η
1
,β
2
=ξ
2
+η
2
,…,β
n-r
=ξ
n-r
+η
0
,显然β
0
,β
1
,β
2
,…,β
n-r
为方程组AX=b的一组解. 令k
1
β
1
+k
2
β
2
+…+k
n-r
β
n-r
=0,即 (k
1
,k
2
,…,k
n-r
)η
0
+k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0, 上式两边左乘A得(k
1
,k
2
,…,k
n-r
)b=0, 因为b为非零列向量,所以k
1
,k
2
,…,k
n-r
=0,于是k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0,注意到ξ
1
,ξ
2
,…,ξ
n-r
线性无关,所以k
1
=k
2
=…=k
n-r
=0,故β
0
,β
1
,β
2
,…,β
n-r
线性无关,即方程组AX=b存在由n-r+1个线性无关的解向量构成的向量组.设β
1
,β
2
,…,β
n-r+2
为方程组AX=b的一组线性无关解,令γ
1
=β
3
-β
1
,γ
2
=β
3
-β
1
,…,γ
n-r+1
=β
n-r+2
-β
1
,根据定义,易证γ
1
,γ
2
,…,γ
n-r+1
线性无关,又γ
1
,γ
2
,…,γ
n-r+1
为齐次线性方程组AX=0的一组解,即方程组AX=0含有n-r+1个线性无关的解,矛盾,所以AX=b的任意n-r+2个解向量都是线性相关的,所以AX=b的线性无关的解向量的个数最多为n-r+1个.
解析
转载请注明原文地址:https://kaotiyun.com/show/kEW4777K
0
考研数学三
相关试题推荐
[*]+C,其中C为任意常数
求微分方程yˊˊ+2yˊ+y=xex的通解.
微分方程yˊ+ytanx=cosx的通解为y=_________.
设线性无关的函数y1(x),y2(x),y3(x)均是方程yˊˊ+p(x)yˊ+q(x)y=f(x)的解C1,C2是任意常数,则该方程的通解是()
设X与Y为具有二阶矩的随机变量,且设Q(a,b)=E[y-(a+bX)]2,求a,b使Q(a,b)达到最小值Qmin,并证明:
已知方程组(Ⅰ)及方程组(Ⅱ)的通解为k1[-1,1,1,0]T+k2[2,-1,0,1]T+[-2,-3,0,0]T.求方程组(Ⅰ),(Ⅱ)的公共解.
设A是m×s矩阵,B是s×n矩阵,则齐次线性方程组BX=0和ABX=0是同解方程组的一个充分条件是()
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+ATA.证明:当λ>0时,矩阵B为正定矩阵.
随机试题
关于酶原没有酶活性的原因是
某新建5×30m混凝土简支梁桥,应将该桥的上部构造预制和安装划分为2个分部工程。()
对于一般性建设项目的环境影响评价工作,()直接影响到该项目投入生产后,资源能源利用效率和废弃物产生。
企业内部银行是一种经营部分银行业务的非银行金融机构。需要经过中国人民银行审核批准才能设立。()(2014年)
发行价格低于金融工具的票面金额称作()。
关于职业化,正确的说法有()。
根据下列资料,回答下题。2012年1~5月份,全国房地产开发投资22213亿元,同比增长18.5%,增速比1~4月份回落0.2个百分点。其中,住宅投资15098亿元,增长13.6%,增速回落0.3个百分点。1~5月份,商品房销售面积288
1945年8月,毛泽东指出“抗日战争阶段过去了,新的情况和任务是国内斗争”。当时,此斗争主要集中在()
西欧中世纪教育的典型特征是()。
台式计算机中的CPU是指()。
最新回复
(
0
)