首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫-aa|x一t|f(t)dt。 证明F’(x)单调增加;
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫-aa|x一t|f(t)dt。 证明F’(x)单调增加;
admin
2018-01-30
89
问题
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫
-a
a
|x一t|f(t)dt。
证明F
’
(x)单调增加;
选项
答案
由已知F(x)=∫
-a
a
|x一t|f(t)dt=∫
-a
x
(x一t)f(t)dt+∫
x
a
(t-x)f(t)dt =x∫
-a
x
f(t)dt一∫
-a
x
tf(t)dt+∫
x
a
tf(t)dt一x∫
x
a
f(t)dt =x∫
-a
x
f(t)dt一∫
-a
x
tf(t)dt一∫
a
x
tf(t)dt+x∫
a
x
f(t)dt, F
’
(x)=∫
-a
x
f(t)dt+xf(x)一xf(x)一xf(x)+∫
a
x
f(t)dt+xf(x) =∫
-a
x
f(t)dt—∫
x
a
f(t)dt。 所以f
’’
(x)=2f(x)>0,因此F
’
(x)为单调增加的函数。
解析
转载请注明原文地址:https://kaotiyun.com/show/kLk4777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 B
0
求解下列微分方程:
用集合的描述法表示下列集合:(1)大于5的所有实数集合(2)方程x2-7x+12=0的根的集合(3)圆x2+y2=25内部(不包含圆周)一切点的集合(4)抛物线y=x2与直线x—y=0交点的集合
设一机器在任意时刻以常数比率贬值.若机器全新时价值10000元,5年末价值6000元,求其在出厂20年末的价值.
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求矩阵A.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设f(x)=3x2+x2|x|,求使得f(n)(0)存在的最高阶数n.
随机试题
血管内皮细胞的特征性结构是()
下列属于国家所有的可移动的文物中,不包括()。
清道夫受体的配体有
在判断AV型斜视时,需检查眼球向上、下各转多少度时的斜视角()
属于混合毒毒蛇的是
毛泽东指出:“我们共产党人好比种子,人民好比土地,我们到了一个地方,就要同那里的人民结合起来,在人民中间生根、开花。”这段话强调中国共产党要()。
偷工减料:诚信
设D={(x,y)|x2+y2≤x+y+1},则=__________.
Languagelearningbeginswithlistening.Individualchildrenvarygreatlywiththeamountoflisteningtheydobeforetheystart
MarkRamirez,aseniorexecutiveatAOL,couldworkinthemostcomfortableleatherchair,ifhewanted.No,thanks.Heprefers
最新回复
(
0
)