首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设f(x),g(x)在点x=x0处可导且f(x0)=g(x0)=0,f′(x0)g′(x0)<0,求证:x=x0是f(x)g(x)的极大值点. (Ⅱ)求函数F(x)=(x∈(—∞,+∞))的值域区间
(Ⅰ)设f(x),g(x)在点x=x0处可导且f(x0)=g(x0)=0,f′(x0)g′(x0)<0,求证:x=x0是f(x)g(x)的极大值点. (Ⅱ)求函数F(x)=(x∈(—∞,+∞))的值域区间
admin
2019-01-29
61
问题
(Ⅰ)设f(x),g(x)在点x=x
0
处可导且f(x
0
)=g(x
0
)=0,f′(x
0
)g′(x
0
)<0,求证:x=x
0
是f(x)g(x)的极大值点.
(Ⅱ)求函数F(x)=
(x∈(—∞,+∞))的值域区间
选项
答案
(Ⅰ)由于[*]=f′(x
0
)g(x
0
)+f(x
0
)g′(x
0
)=0,因此x=x
0
是f(x)g(x)的驻点,进一步证明是它的极大值点. 由条件f′(x
0
)g′(x
0
)<0 [*]f′(x
0
)<0,g′(x
0
)>0(或f′(x
0
)>0,g′(x
0
)<0),由 [*] g′(x
0
)=[*] 及极限的保号性质[*]δ>0,当x∈(x
0
—δ,x
0
+δ,x≠x
0
时 [*] [*]x∈(x
0
,x
0
+δ)时 f(x)<0(>0), g(x)>0(<0); x∈(x
0
—δ,x
0
)时 f(x)>0(<0), g(x)<0(>0) x∈(x
0
—δ,x
0
+δ),x≠x
0
时 f(x)g(x)<0=f(x
0
)g(x
0
) x=x
0
是f(x)g(x)的极大值点. (Ⅱ)由题设知F(x)是(—∞,+∞)上连续的偶函数,且由 [*] F(x)在(—∞,0]上[*],在[0,+∞)上[*]. 由于F(0)=0.又 [*] 因此,函数F(x)的值域区间是[0,[*]arctant2).
解析
转载请注明原文地址:https://kaotiyun.com/show/rwj4777K
0
考研数学二
相关试题推荐
确定常数a和b的值,使=4.
求极限:.
设f(x)=其中g(x)有二阶连续导数,且g(0)=1,g’(0)=一1,求f’(x),并讨论f’(x)在(一∞,+∞)内的连续性.
曲线y=的曲率及曲率的最大值分别为___________.
设A为10×10矩阵,计算行列式|A一λE|,其中E为10阶单位矩阵,λ为常数.
|A|是n阶行列式,其中有一行(或一列)元素全是1,证明:这个行列式的全部代数余子式的和等于该行列式的值.
设矩阵A=相似,并问k为何值时,B为正定阵.
设f(x)=,为了使f(x)对一切x都连续,求常数a的最小正值.
设an=(1)求级数(an+an+2)的值;(2)试证对任意的正数λ,
随机试题
患者女,44岁,敏感多疑,怀疑单位同事有意和她作对,故意给其工作和生活设置障碍,近期经常听到耳边有人说话,对其行为进行评论。护士对其的心理护理中,正确的是
取得证券、期货投资咨询从业资格,但是未在证券、期货投资咨询机构执业的,其从业资格自取得之日起满()后自动失效。
以下各指标都可用于衡量商业银行的流动性,其中数值越高说明商业银行流动性越差的是()。
采用供应商管理库存策略,用户的库存决策权()。
下列关于碳水化合物的计算正确的是()。
已知a=(1,一1,1),b=(2,2,1),则a在b上的投影为().
中国第一部音乐史著作是()
通过问卷或访问对社区中的每一户家庭进行调查,了解他们对社区需要的想法,这种方法被称为()。
把下面六个图形分为具有各自共同特征或规律的两类,分类正确的一项是:
InwhatrespectistheUnitedStatesveryfortunate?
最新回复
(
0
)