首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n阶实对称矩阵A正定的充分必要条件是( )
n阶实对称矩阵A正定的充分必要条件是( )
admin
2017-12-29
41
问题
n阶实对称矩阵A正定的充分必要条件是( )
选项
A、二次型x
T
Ax的负惯性指数为零
B、存在可逆矩阵P使P
—1
AP=E
C、存在n阶矩阵C使A=C
—1
C
D、A的伴随矩阵A
*
与E合同
答案
D
解析
选项A是必要不充分条件。这是因为r(A)=p+q≤n,当g=0时,有r(A)=p≤n。此时有可能p<n,故二次型x
T
Ax不一定是正定二次型。因此矩阵A不一定是正定矩阵。例如 f(x
1
,x
2
,x
3
)=x
1
2
+5x
3
2
。
选项B是充分不必要条件。这是因为P
—1
AP=E表示A与E相似,即A的特征值全是1,此时A是正定的。但只要A的特征值全大于零就可保证A正定,因此特征值全是1是不必要的。
选项C中的矩阵C没有可逆的条件,因此对于A=C
T
C不能说A与E合同,也就没有A是正定矩阵的结论。例如
显然矩阵不正定。
关于选项D,由于
A正定
A
—1
正定
A
*
正定
A
*
与E合同,所以D是充分必要条件。
转载请注明原文地址:https://kaotiyun.com/show/kQX4777K
0
考研数学三
相关试题推荐
设y(x)=求y(0),y’(0),并证明:(1一x2)y"一xy’=4;
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离恒等于该点处的切线在y轴上的截距,且L经过点试求曲线L的方程;
设函数f(u)有连续的一阶导数,f(2)=1,且函数满足求x的表达式.
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3.证明:β,Aβ,A2β线性无关;
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵.证明:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
设X1,X2,…,Xn,…是独立同分布的随机变量序列,E(Xi)=μ,D(Xi)=σ2,i=1,2,…,令证明:随机变量序列{Yn}依概率收敛于μ.
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0.证明:存在η∈[-a,a],使a3f"(η)=3∫-aaf(x)dx.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2一α3,如果β=α1+α2+α3+α4,求线性方程组AX=β的通解.
设f(x)在点x=a处可导,则等于()
求二元函数z=f(x,y)=x2y(4一x—y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的极值、最大值与最小值.
随机试题
Inthethrillingprogressiveyearsoftheearly20thcentury,fewthingsweremoreattractivethanthepromiseofscientifickno
产妇,28岁,妊娠高血压综合征,剖宫产术后静脉滴注硫酸镁。若发生硫酸镁中毒,护士最先观察到
《中华人民共和国公路法》规定,在中华人民共和国境内从事公路的()均适用本法。
下面的行为中当事人应当承担缔约过失责任的是( )。
某政府机关在城市繁华地段建一幢办公楼。在施工招标文件的附件中要求投标人具有垫资能力,并写明:投标人承诺垫资每增加500万元的,评标增加1分。某施工总承包单位中标后,因设计发生重大变化,需要重新办理审批手续。为了不影响按期开工,建设单位要求施工总承包单位按照
下列属于车船税征税范围的有()。
每个人在受到有效刺激的一刹那,往往会__________地表现出瞬间的不被思维控制的真实反应,这就是微反应。填入划横线部分最恰当的一项是:
2016年1—7月份,全国房地产开发投资55361亿元,同比名义增长5.3%,增速比1—6月份回落0.8个百分点。其中,住宅投资36981亿元,增长4.5%,增速回落1.1个百分点。1—7月份,东部地区房地产开发投资31201亿元,同比增长3.4
设X的概率密度为求:(1)FY(y);(2)Cov(X,Y).
TheChineseScienceandTechnologyPapersBeingIncludedinSCIA.Studythechartscarefullyandwriteanessayof160-200
最新回复
(
0
)