首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n阶实对称矩阵A正定的充分必要条件是( )
n阶实对称矩阵A正定的充分必要条件是( )
admin
2017-12-29
100
问题
n阶实对称矩阵A正定的充分必要条件是( )
选项
A、二次型x
T
Ax的负惯性指数为零
B、存在可逆矩阵P使P
—1
AP=E
C、存在n阶矩阵C使A=C
—1
C
D、A的伴随矩阵A
*
与E合同
答案
D
解析
选项A是必要不充分条件。这是因为r(A)=p+q≤n,当g=0时,有r(A)=p≤n。此时有可能p<n,故二次型x
T
Ax不一定是正定二次型。因此矩阵A不一定是正定矩阵。例如 f(x
1
,x
2
,x
3
)=x
1
2
+5x
3
2
。
选项B是充分不必要条件。这是因为P
—1
AP=E表示A与E相似,即A的特征值全是1,此时A是正定的。但只要A的特征值全大于零就可保证A正定,因此特征值全是1是不必要的。
选项C中的矩阵C没有可逆的条件,因此对于A=C
T
C不能说A与E合同,也就没有A是正定矩阵的结论。例如
显然矩阵不正定。
关于选项D,由于
A正定
A
—1
正定
A
*
正定
A
*
与E合同,所以D是充分必要条件。
转载请注明原文地址:https://kaotiyun.com/show/kQX4777K
0
考研数学三
相关试题推荐
求
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离恒等于该点处的切线在y轴上的截距,且L经过点求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形的面积最小.
设y(x)是方程y(4)一y"=0的解,且当x→0时,y(x)是x的3阶无穷小,求y(x).
证明:若A为n阶方阵,则有|A*|—f(一A)*|(n≥2).
在区间[0,a]上|f(x)|≤M,且f(x)在(0,a)内取得极大值.证明:|f’(0)|+|f’(A)|≤Ma.
设f(x),g(x)在[a,b]上二阶可导,且f(A)=f(b)=g(A)=0.证明:∈(a,b),使f"(ξ)g(ξ)+2f’(ξ)g’(ξ)+f(ξ)g"(ξ)=0.
曲线的斜渐近线方程为________.
求函数f(x,y)=x2+2y2一x2y2在区域D={(x,y)|x2+y2≤4,y≥0}上的最大值与最小值.
在区间(0,1)中随机地取两个数,则事件“两数之和小于6/5”的概率为________.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n一中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=记X一(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的
随机试题
暑淫证的性质特点
医疗机构的医务人员违反献血法规定,将不符合国家规定标准的血液用于患者的,可能承担以下法律责任,除了
下列不属于继发性肺结核临床病理特征的是
施工成本分析就是对成本形成过程和影响成本升降的因素进行分析,以寻求进一步降低成本的途径,进行成本分析需要的第一手资料有()。
旅游需求的时间指向性是指旅游需求具有()。
石川馨认为,全面质量管理(TQC)在日本就是全公司范围内的质量管理,其具体内容包括()。
下列属于内部学习动机的是()。
下列选项中,体现人民警察秉公执法的有()
如图所示,某条河流一侧有A、B两家工厂,与河岸的距离分别为4km和5km,且A与B的直线距离为11km,为了处理这两家工厂的污水,需要在距离河岸1km处建造一个污水处理厂,分别铺设排污管道连接A、B两家工厂。假定河岸是一条直线,则排污管道的总长最短为(
某公司2012年1—4季度的营业收入总额分别为135、300、233、110百万元。该公司由东部、中部、西部三大地区分公司组成。2013年在三大分公司的累积营业收入(指当年至各季度止累积)和全年利润总额的数据如下图所示(单位:百万元)。根据材料,下列
最新回复
(
0
)