首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为[-a,a]上的连续偶函数,且f(x)>0,令F(x)= (Ⅰ)证明F’(x)单调增加; (Ⅱ)当x取何值时,F(x)取最小值; (Ⅲ)当F(x)的最小值为f(a)-a2-1时,求函数f(x)。
设f(x)为[-a,a]上的连续偶函数,且f(x)>0,令F(x)= (Ⅰ)证明F’(x)单调增加; (Ⅱ)当x取何值时,F(x)取最小值; (Ⅲ)当F(x)的最小值为f(a)-a2-1时,求函数f(x)。
admin
2017-01-14
41
问题
设f(x)为[-a,a]上的连续偶函数,且f(x)>0,令F(x)=
(Ⅰ)证明F’(x)单调增加;
(Ⅱ)当x取何值时,F(x)取最小值;
(Ⅲ)当F(x)的最小值为f(a)-a
2
-1时,求函数f(x)。
选项
答案
(Ⅰ) [*] 所以F’’(x)=2f(x)>0,因此F’(x)单调增加。 (Ⅱ)因为F’(0)=[*]且f(x)为偶函数,所以F’(0)=0,又因为F’’(0)>0, 所以x=0为F(x)的唯一极小值点,也为最小值点。 (Ⅲ)由[*]=f(a)-a
2
-1,两边求导得 2af(a)=f’(a)-2a, 于是 f’(x)-2xf(x)=2x, 解得 f(x)=[∫2xe
-∫2xdx
dx+C]e
-∫-2xdx
=[*] 在[*]=f(a)-a
2
-1中令a=0,得f(0)=1,则C=2,于是 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/kRu4777K
0
考研数学一
相关试题推荐
[*]
0
[*]
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAx=0必有().
设X1,X2,X3,X4是来自正态总体N(0,22)的简单随机样本,X=a(X1-2X2)2+b(3X3-4X4)2,则当a=__________,b=____________时,统计量X服从X2分布,其自由度为_____________.
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2.(1)求实数a的值;(2)求正交变换x=Qy将f化为标准形.
[*]由于Aα与α线性相关,则存在数k≠0使Aα=kα,即a=ka,2a+3=k,3a+4=k三式同时成立,解此关于a,k的方程组可得a=-1,k=1.
设幂级数的收敛半径分别为,则幂级数的收敛半径为().
设二次型f(x1,x2,x3)=XTAX=ax12+222+(-232)+2bx32(b>0),其中二次矩阵A的特征值之和为1,特征值之积为-12.(Ⅰ)求a,b的值;(Ⅱ)利用正交变换将二次型f化为标准形,并写出所用的正交变换
设,B=A一1,则B的伴随矩阵B*的所有元素之和等于________.
随机试题
护滩带边缘预埋压石应()等,面层宜用粒径相对较大块石。
中国人甲与俄罗斯人乙结婚,婚后两人定居在中国,两人的财产中均有动产及不动产,分别在中国与俄罗斯,五年后,甲与乙因感情不和在中国起诉离婚。请问:甲乙财产分配应适用何国法律?
A.革薢B.茵陈C.茯苓D.猪苓E.木通
微孔滤膜的特点是( )。
下列各项中,不符合收入要素定义的是()。
甲公司为境内注册的上市公司,外币业务采用交易发生日的即期汇率折算。有关业务如下:(1)甲公司30%的收入来自于出口销售,其余收入来自于国内销售;生产产品所需原材料有30%需进口,出口产品和进口原材料通常以欧元结算。2011年9月30日外币科目余额为:
音乐是典型的_________和_________,所以音乐教育自然成为“实施美育的主要途径之一”。
某校学生列队以8千米/小时的速度前进,在队尾,校长让一名学生跑步到队伍的最前面找带队的老师传达一个命令,然后立即返回队尾,这位学生的速度为12千米/小时,从队伍出发赶到排头又回到队尾共用了7.2分钟,那么学生的队伍长()米。
双趋冲突:是指两种以上都具有吸引力的需要目标同时出现,而由于条件限制,个体无法同时采取两种行动所表现出的动机冲突。下列属于双趋冲突的是()。
以下几组迁移类型中,哪—组不是按一个维度划分的?()
最新回复
(
0
)