首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为[-a,a]上的连续偶函数,且f(x)>0,令F(x)= (Ⅰ)证明F’(x)单调增加; (Ⅱ)当x取何值时,F(x)取最小值; (Ⅲ)当F(x)的最小值为f(a)-a2-1时,求函数f(x)。
设f(x)为[-a,a]上的连续偶函数,且f(x)>0,令F(x)= (Ⅰ)证明F’(x)单调增加; (Ⅱ)当x取何值时,F(x)取最小值; (Ⅲ)当F(x)的最小值为f(a)-a2-1时,求函数f(x)。
admin
2017-01-14
51
问题
设f(x)为[-a,a]上的连续偶函数,且f(x)>0,令F(x)=
(Ⅰ)证明F’(x)单调增加;
(Ⅱ)当x取何值时,F(x)取最小值;
(Ⅲ)当F(x)的最小值为f(a)-a
2
-1时,求函数f(x)。
选项
答案
(Ⅰ) [*] 所以F’’(x)=2f(x)>0,因此F’(x)单调增加。 (Ⅱ)因为F’(0)=[*]且f(x)为偶函数,所以F’(0)=0,又因为F’’(0)>0, 所以x=0为F(x)的唯一极小值点,也为最小值点。 (Ⅲ)由[*]=f(a)-a
2
-1,两边求导得 2af(a)=f’(a)-2a, 于是 f’(x)-2xf(x)=2x, 解得 f(x)=[∫2xe
-∫2xdx
dx+C]e
-∫-2xdx
=[*] 在[*]=f(a)-a
2
-1中令a=0,得f(0)=1,则C=2,于是 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/kRu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 B
A、 B、 C、 D、 A
设y=y(x)是函数方程ex+y=2+x+2y在点(1,-1)所确定的隐函数,求y〞|(1,-1)和d2y.
(1)设F(x)=f(-x),且f(x)有n阶导数,求F(n)(x);(2)设f(x)=xe-x,求f(n)(x).
设f(x)在(a,b)内是严格下凸函数,证明对任何x1,x2∈(a,b),x1<x<x2,有不等式成立.
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.试将x=x(y)所满足的微分方程(d2x)/(dy2)+(y+sinx)(dx/dy)=0变换为y=y(x)满足的微分方程;
设A为n阶矩阵,满足AAT=E(E为n阶单位阵,AT是A的转置矩阵),丨A丨
设常数λ>0,而级数收敛,则级数().
(2002年试题,六)设函数f(x)在(一∞,+∞)内具有一阶连续导数,L是上半平面(y>0)内的有向分段光滑曲线,其起点为(a,b),终点为(c,d)记当ab=cd时,求I的值.
设函数Fn(x)=其中n=1,2,3,…为任意自然数,f(x)为[0,+∞)上正值连续函数.求证:Fn(x)在(0,+∞)存在唯一零点x0;
随机试题
关于每分输出量的叙述,错误的是
有关肿瘤倍增时间的描述错误的是
阻塞性黄疸时,血清酶谱的变化正确的是
下列哪项不属于外科急腹症的手术方式( )
治疗经行身痛之血虚证的代表方剂是()
采用侵蚀模式预测水土流失时,常用方法包括()。
县级以上人民政府城乡规划行政主管部门实施行政监督检查权的基本前提是必须遵循依法行政,下列选项中不属于其具体内容的是()
甲公司期末原材料的账面余额为100万元,数量为10吨。该原材料专门用于生产与乙公司所签合同约定的20台Y产品该合同约定:甲公司为乙公司提供Y产品20台,每台售价10万元(不含增值税,本题下同)。将该原材料加工成20台Y产品尚需加工成本总额为95万元。估计销
设一棵树的度为3,其中度为3,2,1的结点个数分别为4,1,3。则该棵树中的叶子结点数为
Howoldwastheshoe?
最新回复
(
0
)