首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),已知Ax=β的通解为 其中为对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,令B=(α1,α2,α3),试求 By=β的通解.
设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),已知Ax=β的通解为 其中为对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,令B=(α1,α2,α3),试求 By=β的通解.
admin
2020-04-30
37
问题
设α
1
,α
2
,α
3
,α
4
,β为4维列向量,A=(α
1
,α
2
,α
3
,α
4
),已知Ax=β的通解为
其中
为对应的齐次线性方程组Ax=0的基础解系,k
1
,k
2
为任意常数,令B=(α
1
,α
2
,α
3
),试求
By=β的通解.
选项
答案
由题设知r(A)=2,且α
1
-α
2
+2α
3
+α
4
=β,α
1
+2α
2
+0α
3
+α
4
=0,-α
1
+α
2
+α
3
+0α
4
=0,于是有α
1
-α
2
=α
3
,-α
1
-2α
2
=α
4
,2α
1
-5α
2
+0α
3
=β,可见α
1
,α
2
线性无关,于是r(B)=2,且(2,-5,0)
T
为By=β的特解,又由-α
1
+α
2
+α
3
=0,知(1,-1,-1)
T
为By=0的非零解,可作为基础解系,故By=β的通解为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/kbv4777K
0
考研数学一
相关试题推荐
设A=(α1,α2,α3,α4)是4阶矩阵.A*为A的伴随矩阵.若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可为
设矩阵A=b=若集合Ω={1,2},则线性方程组Ax=b有无穷多解的充分必要条件为
设是二阶常系数非齐次线性微分方程y"+ay’+by=cex的一个特解,则
设三阶矩阵A=,若A的伴随矩阵的秩等于1,则必有
(08年)设A为n阶非零矩阵,E为n阶单位矩阵,若A3=O,则
设α1,α2,α3是4元非齐次线性方程组Ax=b的3个解向量,且秩(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=
(16年)随机试验E有三种两两不相容的结果A1,A2,A3,且三种结果发生的概率均为,将试验E独立重复做2次,X表示2次试验中结果A1发生的次数,Y表示2次试验中结果A2发生的次数,则X与Y的相关系数为
(2009年试题,一)设A,B均为二阶矩阵,A*,B*分别为A,曰的伴随矩阵,若|A|=2,|B|=3,则分块矩阵的伴随矩阵为().
(2001年试题,二)将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于().
向量组α1,α2,…,αs线性无关的充要条件是().
随机试题
感受寒邪而致的“中寒”是指
关于生效裁判执行,下列哪一做法是正确的?
某房地产开发公司拟在某城市近郊区开发建造一居住区,具体的设计规划见相关文件。居住区用地的中高层住宅比例为40%、总建筑密度为50%、住宅建筑净密度为80%;该用地现已成为市政公用设施齐全,布局完整,环境较好,以多、中、高层住宅为主的用地。该类用地按照土
二级资质房地产估价机构可以从事的房地产估价业务有()。[2008年考题]
我国统一规定《测绘资质证书》的式样的部门是()。
某公司承接一座城市跨河桥A标,为上、下行分立的两幅桥,上部结构为现浇预应力混凝土连续箱梁结构,跨径为70m+120m+70m。建设中的轻轨交通工程B标高架桥在A标两幅桥梁中间修建,结构形式为现浇截面预应力混凝土连续箱梁,跨径为87.5m+145m+87.5
易燃气体的火灾危险性不包括()。
账户的期末余额=期初余额+本期增加发生额一本期减少发生额。()[2009年真题]
不在公司担任具体管理职务的董事,因履行职责到达公司现场的时间每年应当不少于()
下列各项资产减值准备中,在相关资产持有期间内可以通过损益转回的有()
最新回复
(
0
)