首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(99年)设f(x)是连续函数,F(x)是f(x)的原函数,则
(99年)设f(x)是连续函数,F(x)是f(x)的原函数,则
admin
2017-04-20
28
问题
(99年)设f(x)是连续函数,F(x)是f(x)的原函数,则
选项
A、当f(x)是奇函数时,F(x)必是偶函数.
B、当f(x)是偶函数时,F(x)必是奇函数.
C、当f(x)是周期函数时,F(x)必是周期函数.
D、当f(x)是单调增函数时,F(x)必是单调增函数.
答案
A
解析
排除法.(B),(C),(D)分别举反例如下.
(B)的反例:f(x)=cosx,F(x)=sinx+1不是奇函数.
(C)的反例:f(x)=cosx+1,F(x)=sinx+x不是周期函数.
D)的反例:f(x)=x,F(x)=
不是单调增的.
所以(A).
转载请注明原文地址:https://kaotiyun.com/show/kgu4777K
0
考研数学一
相关试题推荐
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y’(0)=3/2的解.
求微分方程y"-2y’-e2x=0满足条件y(0)=1,y’(0)=1的解.
计算曲线积分其中L是以点(1,0)为中心,R为半径的圆周(R>1),取逆时针方向.
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:“20件产品全是合格品”与“20件产品中至少有一件是废品”;
设3阶矩阵A的特征值为1,2,2,E为3阶单位矩阵,则丨4A-1-E丨=_________.
已知曲线,其中函数f(t)具有连续导数,且f(0)=0,fˊ(t)>0,(0<t<π/2),若曲线L的切线与x轴的交点到切点的距离值恒为1,求函数f(t)的表达式,并求此曲线L与x轴与y轴无边界的区域的面积.
设二阶常系数微分方程y〞+αyˊ+βy=ye2x有一个特解为y=e2x+(1+x)ex,试确定α,β,γ和此方程的通解.
已知4阶方阵A=(α1,α2,α2,α4),α1,α2,α3,α4均为4维列向量,其α2,α3,α4线性无关,α=2α2-aα3,如果β=α1+α2+α3+α
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f〞(x)<0,且f(1)=fˊ(1)=1,则().
设函数Fn(x)=其中n=1,2,3,…为任意自然数,f(x)为[0,+∞)上正值连续函数.求证:Fn(x)在(0,+∞)存在唯一零点x0;
随机试题
《中华人民共和国药典》关于粉末分等的规定A、粗粉B、中粉C、细粉D、最细粉E、极细粉全部通过二号筛但混有通过四号筛不超过40%的粉末
女性,52岁,右上腹疼痛伴黄疸,CT平扫见肝左内叶及右前叶密度减低,肝内胆管轻度扩张,正常胆囊不显示,局部见与肝密度相似的软组织肿块影,最可能的诊断是
下列选项中,哪类案件属于非诉案件?()。
一般来说,下列关于国债风险的表述,正确的有()。
为什么喝一小杯酒脸就变得红彤彤?日前,研究人员找到了些许头绪,50%的亚洲人,肝脏中的乙醇代谢酶都存在突变现象,其代谢的速率比正常酶高出100倍。这使得代谢产物乙醛迅速聚集,导致面部血管充血肿胀,从而变成一张大红脸。这一基因变异在华东华南一带发生率高达99
按照布鲁纳的观点,学习学科的基本结构的必要性有哪些?
设n维向量α1,α2,…,αs的秩为r,则下列命题正确的是()
下面关于网络信息安全的—些叙述中,不正确的是______。
下列关于增量备份特点的描述中,错误的是()。
A、Lookingsidewaystoseehowfastyourneighboreats.B、Eatingfromtheoutsidetowardthemiddle.C、Swallowingthepiewithwa
最新回复
(
0
)