首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。 (Ⅰ)计算PTDP,其中 (Ⅱ)利用(Ⅰ)的结果判断矩阵B一CTA—1C是否为正定矩阵,并证明结论。
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。 (Ⅰ)计算PTDP,其中 (Ⅱ)利用(Ⅰ)的结果判断矩阵B一CTA—1C是否为正定矩阵,并证明结论。
admin
2017-12-29
113
问题
设D=
为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。
(Ⅰ)计算P
T
DP,其中
(Ⅱ)利用(Ⅰ)的结果判断矩阵B一C
T
A
—1
C是否为正定矩阵,并证明结论。
选项
答案
[*] (Ⅱ)由(Ⅰ)中结果知矩阵D与矩阵M=[*]合同,又因D是正定矩阵,所以矩阵M为正定矩阵,从而可知M是对称矩阵,那么B一C
T
A
—1
C是对称矩阵。 对m维零向量x=(0,0,…,0)
T
和任意n维非零向量y=(y
1
,y
2
,…,y
n
)
T
,都有 [*] 可得 y
T
(B一C
T
A
—1
C)y>0, 依定义,y
T
(B一C
T
A
—1
C)y为正定二次型,所以矩阵B一C
T
A
—1
C为正定矩阵。
解析
转载请注明原文地址:https://kaotiyun.com/show/kmX4777K
0
考研数学三
相关试题推荐
求∫(x5+3x2—2x+5)cosxdx.
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件为
设α=[a1,a2,…,an]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=0,A=E+αβT,试计算:An;
设α=[a1,a2,…,an]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=0,A=E+αβT,试计算:|A|;
设A是三阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是ξ1=[2,2,一1]T,ξ2=[一1.,2,2]T,ξ3=[2,一1,2]T.又β=[1,2,3]T.计算:Anβ.
设f(x)在(一∞,+∞)内连续,以T为周期,证明:∫0xf(t)dt以T为周期∫0xf(t)dt=0;
已知则I=()
求二阶常系数线性微分方程y"+λy’=2x+1的通解,其中λ为常数.
已知二次型f(x1,x2,x3)=422一3x32+4x1x2—4x1x3+8x2x3.用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
判别下列正项级数的敛散性:(Ⅰ),其中{xn}是单调递增而且有界的正数数列.
随机试题
X线图像的特点是:由黑到白不同灰度的影像组成,是________;图像上的白影与黑影,虽然也与组织的厚度有关,但主要反映________的高低;X线图像是X线束穿透某一部位的________的总和,是该穿透路径上各个结构影像相互叠加在一起的影像。
消音操作是为清除()音响器件发出的报警声而进行的操作。
在人体内由葡萄糖合成脂肪酸的直接中间产物是
幼儿期进行健康检查时间间隔
合规负责人应全面协调商业银行合规风险的识别和管理,监督合规管理部门根据合规风险管理计划履行职责,并分管业务条线。()
精神分裂症患者通常会表现出()。
在西方,最早实施人事管理的部门是()。
下面关于PCI和IDE的叙述中,正确的是( )。
Whattwoholidaysarementionedinthepassage?
A、Therentalleasewithlandlord’ssignature.B、Agovernment-issuedphotoID.C、Thefinanceprooffromthebank.D、Areferencel
最新回复
(
0
)