设du=(3x2y+8xy2)dx+(x3+8x2y+12yey)dy,求u(x,y)的表达式.

admin2023-03-22  17

问题 设du=(3x2y+8xy2)dx+(x3+8x2y+12yey)dy,求u(x,y)的表达式.

选项

答案解法1 设P=3x2y+8xy2,Q=x3+8x2y+12yey,则 [*]=3x2+16xy=[*] 所以积分与路径无关,从而 u(x,y)=∫(0,0)(x,y)(3x2y+8xy2)dx+(x3+8x2y+12yey)dy+C1 =∫0x0dx+∫0y(x3+8x2y+12yey)dy+C1 =x3y+4x2y2+12ey(y-1)+C (C=12+C1). 解法2 由[*]=P=3x2y+8xy2,把y看作不变的,对x积分得 u(x,y)=x3y+4x2y2+φ(y). 而 [*]=Q=x3+8x2y+12yey=x3+8x2y+φ’(y), 故有φ’(y)=12yey,从而 φ(y)=∫12yeydy=12ey(y-1)+C, 所以 u(x,y)=x3y+4x2y2+12ey(y-1)+C.

解析
转载请注明原文地址:https://kaotiyun.com/show/koMD777K
0

相关试题推荐
最新回复(0)